
Data Operations Reference Sheet

Fraida Fund

This reference sheet summarizes some (not all!) of the data manipulation tasks you’ll do most often
throughout the course.

Numpy arrays: format + shape
Numeric data is often stored as a numpy array:

• 1D array: x.shape == (n,) (a vector)
• 2D array: X.shape == (n_samples, n_features) (a matrix)
• Higher-D array (common for image data): I.shape == (height, width, channels) (one image) or
I.shape == (n_images, height, width) / I.shape == (n_images, height, width, channels)
(a batch)

Useful attributes:

X.shape # tuple, e.g. (100, 5)
X.ndim # number of dimensions, e.g. 2
X.dtype # element type, e.g. float64

Axis convention (for 2D X):
• axis=0: down the rows (compute one value per column/feature)
• axis=1: across the columns (compute one value per row/sample)

Pandas: DataFrame + Series, named columns + named index
pandas wraps tabular data with labels:

• DataFrame: 2D table with named columns and a named index (row labels)
• Series: 1D labeled array (a single column)

and also allows different columns to have different types.
Useful attributes:

df.shape # (n_rows, n_cols)
df.columns # column names
df.index # row labels (may be a RangeIndex, dates, IDs, ...)
df.dtypes # column data types

Two common row selectors:
• df.loc[...] uses labels (index values)
• df.iloc[...] uses integer positions

1



Common operations (numpy vs pandas)
Assume:

import numpy as np
import pandas as pd

X = np.array([[1, 10.0],
[2, 20.0],
[3, np.nan]])

df = pd.DataFrame({"a": [1, 2, 3],
"g": ["A", "A", "B"],
"b": [10.0, 20.0, np.nan]},
index=["r1", "r2", "r3"])

Basic operation (what + why) How in numpy (example) How in pandas (example)
Inspect size/shape(sanity-check
what you loaded)

X.shape→ (3, 2) df.shape→ (3, 2)

Inspect “labels”(know what
columns/rows mean)

(no built-in labels) df.columnsdf.index

Select a column(work with one
feature)

x = X[:, 0]→ 1D array s = df["a"]→ Series

Select multiple columns(subset
features)

X2 = X[:, [0, 1]]→ 2D array df2 = df[["a", "b"]]→
DataFrame

Select rows by named index(use
meaningful row labels/IDs)

(no built-in labels) row = df.loc["r2"]

Select rows by position(grab a
specific sample)

row = X[1] row = df.iloc[1]

Filter rows by condition(keep
only rows meeting a rule)

mask = X[:, 0] > 1Xpos =
X[mask]

dfpos = df[df["a"] > 1]

Sort by a column(e.g. to rank) idx = np.argsort(X[:, 0])Xs
= X[idx]

dfs = df.sort_values(by="a")

Sort while keeping
correspondence(sort X and y
together)

idx = np.argsort(X[:, 0])Xs
= X[idx]ys = y[idx]

dfs = df.sort_values("a")ys
= y.loc[dfs.index]

Conditionally assign
values(create/update a column
using a rule)

X2 = np.where(X > 0, X, 0) df["b2"] =
df["b"].where(df["b"] > 0,
0)

Conditionally get indices(find
which rows match a rule)

idx = np.where(X[:, 0] >
1)[0]→ row indices

idx = df.index[df["a"] >
1]→ index labels

Compute summary
statistics(describe features)

m = np.mean(X, axis=0) m =
df.mean(numeric_only=True)

Argmax/argmin(index of
max/min; e.g. “best/worst” row)

i_max = np.argmax(X[:,
0])i_min = np.argmin(X[:,
0])

i_max =
df["a"].idxmax()i_min =
df["a"].idxmin()

Group + aggregate(summarize
by category)

(not a core numpy pattern) means =
df.groupby("g")["b"].mean()

Stack/concat columns(combine
features)

X3 = np.column_stack([X1,
X2])

df3 = pd.concat([df1, df2],
axis=1)

2



Basic operation (what + why) How in numpy (example) How in pandas (example)
Reshape 1D ↔ 2D(match API
expectations like (n_rows, 1))

x_col = x.reshape(-1, 1) →
shape (n_rows, 1)x_row =
x.reshape(1, -1) → shape
(1, n_rows)x_1d =
X.reshape(-1,) → shape
(n_rows*n_cols,)

s = df["a"] → Series
(1D)df[["a"]] → DataFrame
(2D)

Create a new feature(feature
engineering)

new_feature = X[:,0] *
X[:,1]Xnew =
np.column_stack([X,
new_feature])

df =
df.assign(new_feature=df["a"]
* df["b"])

Ordinal-encode
categories(preserve order info)

map_ =
{"low":1,"med":2,"high":3}x
= np.array([map_[v] for v
in vals])

map_ =
{"low":1,"med":2,"high":3}s
= df["level"].map(map_)

One-hot encode categories(no
implied ordering)

(not a core numpy pattern) df_ohe = pd.get_dummies(df,
columns=["level"],
dtype=int)

Read from a file(load data) X = np.load("X.npy")or
np.loadtxt for text

df =
pd.read_csv("data.csv")common:
sep, header, index_col

Convert between numpy ↔
pandas(use the right tool)

df = pd.DataFrame(X,
columns=["a","b"])

X = df.to_numpy()

3


	Numpy arrays: format + shape
	Pandas: DataFrame + Series, named columns + named index
	Common operations (numpy vs pandas)

