Data Operations Reference Sheet

Fraida Fund

This reference sheet summarizes some (not all!) of the data manipulation tasks you’ll do most often
throughout the course.

Numpy arrays: format + shape

Numeric data is often stored as a numpy array:

- 1D array: x.shape == (n,) (a vector)

- 2D array: X.shape == (n_samples, n_features) (a matrix)

- Higher-D array (common for image data): I.shape == (height, width, channels) (oneimage)or
I.shape == (n_images, height, width) / I.shape == (n_images, height, width, channels)
(a batch)

Useful attributes:

X.shape # tuple, e.g. (100, 5)
X.ndim # number of dimensions, e.g. 2
X.dtype # element type, e.g. float64

Axis convention (for 2D X):

+ axis=0: down the rows (compute one value per column/feature)
+ axis=1: across the columns (compute one value per row/sample)

Pandas: DataFrame + Series, named columns + named index

pandas wraps tabular data with labels:

+ DataFrame: 2D table with named columns and a named index (row labels)
+ Series: 1D labeled array (a single column)

and also allows different columns to have different types.

Useful attributes:

df . shape # (n_rows, n_cols)
df .columns # column mames
df.index # row labels (may be a RangeIndexz, dates, IDs, ...)

df .dtypes # column data types

Two common row selectors:

* df.loc[...] uses labels (index values)
« df.iloc[...] uses integer positions

Common operations (numpy vs pandas)

Assume:
import numpy as np

import pandas as pd

X = np.array([[1, 10.0],
[2, 20.0],
[3, np.nanl])

df = pd.DataFrame({"a":

[1, 2’ 3]’

ngu: [I|All, ”A”, "B"],
"b": [10.0, 20.0, np.nan]},

index=["r1",

||r2|| s ||r3||])

Basic operation (what + why)

How in numpy (example)

How in pandas (example)

Inspect size/shape(sanity-check
what you loaded)

Inspect “labels”(know what
columns/rows mean)

Select a column(work with one
feature)

Select multiple columns(subset
features)

Select rows by named index(use
meaningful row labels/IDs)
Select rows by position(grab a
specific sample)

Filter rows by condition(keep
only rows meeting a rule)

Sort by a column(e.g. to rank)

Sort while keeping
correspondence(sort X and y
together)

Conditionally assign
values(create/update a column
using a rule)

Conditionally get indices(find
which rows match a rule)
Compute summary
statistics(describe features)
Argmax/argmin(index of
max/min; e.g. “best/worst” row)

Group + aggregate(summarize
by category)

Stack/concat columns(combine
features)

X.shape— (3, 2)
(no built-in labels)
x = X[:, 0]— 1D array

X2 = X[:, [0, 111— 2D array

(no built-in labels)
row = X[1]

mask = X[:, 0] > 1Xpos =

X [mask]

idx = np.argsort(X[:, 0])Xs
= X[idx]

idx = np.argsort(X[:, 0])Xs
= X[idx]ys = y[idx]

X2 = np.where(X > 0, X, 0)

idx = np.where(X[:, 0] >
1) [01— row indices
m = np.mean(X, axis=0)

i_max = np.argmax(X[:,
0])i_min = np.argmin(X[:,
oD

(not a core numpy pattern)

X3 = np.column_stack([X1,
X21)

df .shape— (3, 2)

df .columnsdf.index

s = df["a"]—> Series
df2 = daf[["a", "b"1]1—
DataFrame

row = df.loc["r2"]

df .iloc[1]

row
dfpos = df[df["a"] > 1]

dfs

df.sort_values(by="a")

dfs = df.sort_values("a")ys
= y.loc[dfs.index]

df ["b2"] =

df ["b"] .where(df ["b"] > O,
0)

idx = df.index[df["a"] >
1] — index labels

m =

df .mean (numeric_only=True)
i_max =

df ["a"].idxmax()i_min =
df["a"].idxmin()

means =

df . groupby("g") ["b"] .mean()
df3 = pd.concat([df1l, df2],
axis=1)

Basic operation (what + why)

How in numpy (example)

How in pandas (example)

Reshape 1D <> 2D(match API
expectations like (n_rows, 1))

Create a new feature(feature
engineering)

Ordinal-encode
categories(preserve order info)

One-hot encode categories(no
implied ordering)
Read from a file(load data)

Convert between numpy <>
pandas(use the right tool)

x_col = x.reshape(-1, 1) —
shape (n_rows, 1)x_row =
x.reshape(1l, -1) — shape
(1, n_rows)x_1d =
X.reshape(-1,) — shape
(n_rows*n_cols,)
new_feature = X[:,0] *
X[:,1]Xnew =
np.column_stack([X,
new_feature])

map_ =
{"low":1,"med":2,"high":3}x
= np.array([map_[v] for v
in vals])

(not a core numpy pattern)

X = np.load("X.npy")or
np.loadtxt for text

df = pd.DataFrame (X,
columns=["a","b"])

s = df["a"] — Series
(1D)af[["a"]] — DataFrame
(2D)

df =
df .assign(new_feature=df ["a"]
*x df ["b"])

map_ =
{"low":1,"med":2,"high":3}s
= df["level"] .map(map_)

df_ohe = pd.get_dummies(df,
columns=["level"],

dtype=int)

df =
pd.read_csv("data.csv")common:
sep, header, index_col

X = df.to_numpy()

	Numpy arrays: format + shape
	Pandas: DataFrame + Series, named columns + named index
	Common operations (numpy vs pandas)

