Simple linear regression - extended derivation of OLS
solution

Fraida Fund

Set up

We assume a linear model

Given the (convex) loss function

L(wy, w;) = %Z[% — (wo + wyz;)]?

to find the minimum, we take the partial derivative with respect to each parameter, and set it equal to
zero:
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Solution for intercept w,,

First, let's solve for the intercept wy,. Using the chain rule, power rule:

OL _ LSy, — (g + wa))(—1) = —% >l — (g + g
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(We can then drop the constant factor when we set this expression equal to 0.)

Then, setting ;TL = (O is equivalent to setting the sum of residuals to zero:
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(where e, is the residual term for sample 2).



Solution for slope w,

Next, we work on the slope:

oL _1 Z 2[y; — (wy + wy;)](—2;)
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Again, we can drop the constant factor. Then, this is equivalent to:
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(where ¢, is the residual term for sample %).

Solving two equations for two unknowns
From setting the g—wLO =0and aaTL = 0 we end up with two equations involving the residuals:

n n
=1 =1

where
e; = y; — (wo +wy ;)

We can expand Z?Zl e; = Ointo
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then divide by n, and we find the intercept

1 ¢ 1 &
wO:_Zyi_wlﬁzxi
i=1

n =1

where x, y are the means of x, y.



To solve for w1, expand E?Zl x;e; = Ointo
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and multiply by n.
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Also, multiply the “expanded” version of Z?zl e; =0,

by > z;, to get
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Now, we can subtract to get
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and solve for w7:
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