
Bias and variance for linear regression

Fraida Fund

In this set of notes, we derive the bias and variance for linear regression models, including linear basis
function models.

Linear basis function model
For data (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛, consider the linear basis function model:

̂𝑦 = 𝑓(𝑥, 𝑤) = 𝜙(𝑥)𝑇 𝑤 = 𝑤1𝜙1(𝑥) + … + 𝑤𝑝𝜙𝑝(𝑥)
The least squares fit is

𝑤 = (Φ𝑇 Φ)−1Φ𝑇 𝑦
where

Φ = [
𝜙1(𝑥1) ⋯ 𝜙𝑝(𝑥1)

⋮ ⋱ ⋮
𝜙1(𝑥𝑛) ⋯ 𝜙𝑝(𝑥𝑛)

]

Assume the true function is 𝑡(𝑥) such that

𝑦 = 𝑡(𝑥) + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎2
𝜖 )

When there is no under-modeling,

𝑡(𝑥) = 𝑓(𝑥, 𝑤𝑡) = 𝜙(𝑥)𝑇 𝑤𝑡

where 𝑤𝑡 is the true parameter vector.

Unique solution to ordinary least squares estimate
For Φ ∈ 𝑅𝑛×𝑝, there is a unique solution to the ordinary least squares estimate

𝑤 = (Φ𝑇 Φ)−1Φ𝑇 𝑦
only if Rank(Φ) = 𝑛. This will be the case if the columns of Φ are linearly independent, and 𝑛 ≥ 𝑝.
In other words, the unique solution exists only if the number of data samples for training (𝑛) is greater
than or equal to the number of parameters 𝑝.
This limits the model complexity you can use (greater 𝑝 ⟹ greater model complexity).
For the rest of these notes, we will assume a unique least squares solution (𝑛 ≥ 𝑝).
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Bias of linear model
Let us give a definition of bias on a test point, (𝑥𝑡, 𝑦𝑡) for a function 𝑓 with parameter estimate 𝑤̂:

Bias(𝑥𝑡) ∶= 𝑡(𝑥𝑡) − 𝐸[𝑓(𝑥𝑡, 𝑤̂)]
We will try to derive the bias for a linear regression when the true function is in the assumed model class,
i.e. there is no under-modeling.
Suppose that there is no under-modeling, so there is a parameter vector 𝑤𝑡 such that

𝑡(𝑥) = 𝑓(𝑥, 𝑤𝑡) = 𝜙(𝑥)𝑇 𝑤𝑡

Then for each training sample 𝑖 = 1, … , 𝑛,

𝑦𝑖 = 𝜙(𝑥𝑖)𝑇 𝑤𝑡 + 𝜖𝑖

and for the entire training set, 𝑦 = Φ𝑤𝑡 + 𝜖.
For a fixed training set, the least squares parameter estimate will be

𝑤̂ = (Φ𝑇 Φ)−1Φ𝑇 𝑦
= (Φ𝑇 Φ)−1Φ𝑇 (Φ𝑤𝑡 + 𝜖)
= 𝑤𝑡 + (Φ𝑇 Φ)−1Φ𝑇 𝜖

Now we can find 𝐸[𝑤̂] over the samples of noisy training data: since 𝐸[𝜖] = 0, we have 𝐸[𝑤̂] = 𝑤𝑡.
Informally, we can say that on average, the parameter estimate matches the “true” parameter.
Then 𝐸[𝑓(𝑥𝑡, 𝑤̂)] = 𝐸[𝑓(𝑥𝑡, 𝑤𝑡)] = 𝑡(𝑥𝑡).
Conclusion: We can see that when the model is linear and there is no under-modeling, there is no bias:

Bias(𝑥𝑡) = 0

Random vectors
Before we look at the variance, we will review some terminology of random vectors:

• A random vector 𝑥 = (𝑥1, … , 𝑥𝑑)𝑇 is a vector where each 𝑥𝑗 is a random variable.
• The vector of means of 𝑥 is 𝜇 = (𝐸[𝑥1], … , 𝐸[𝑥𝑑])𝑇 = (𝑢1, … , 𝑢𝑑)𝑇 .
• The covariance of 𝑥𝑖, 𝑥𝑗 is 𝐶𝑜𝑣(𝑥𝑖, 𝑥𝑗) = 𝐸[(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗)]
• The variance matrix (which is a 𝑑 × 𝑑 matrix) is:

𝑉 𝑎𝑟(𝑥) ∶= 𝐸[(𝑥 − 𝑢)(𝑥 − 𝑢)𝑇 ] = [
𝐶𝑜𝑣(𝑥1, 𝑥1) ⋯ 𝐶𝑜𝑣(𝑥1, 𝑥𝑑)

⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑥𝑑, 𝑥1) ⋯ 𝐶𝑜𝑣(𝑥𝑑, 𝑥𝑑)

]

• In a linear transform 𝑦 = 𝐴𝑥 + 𝑏, the input 𝑥 ∈ 𝑅𝑁 is mapped to 𝐴𝑥 ∈ 𝑅𝑀 by 𝐴 ∈ 𝑅𝑀×𝑁
• The mean and variance matrix under this linear transform are given by 𝐸(𝑦) = 𝐴𝐸(𝑥) + 𝑏 and

𝑉 𝑎𝑟(𝑦) = 𝐴𝑉 𝑎𝑟(𝑥)𝐴𝑇 , respectively.
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Variance of linear model
Now us give a definition of variance on a test point, (𝑥𝑡, 𝑦𝑡) for a function 𝑓 with parameter estimate 𝑤̂:

Var(𝑥𝑡) ∶= 𝐸[(𝑓(𝑥𝑡, 𝑤̂) − 𝐸[𝑓(𝑥𝑡, 𝑤̂)])2]
We will try to derive this variance in three steps: first, we will find the variance of the parameter estimate
𝑤̂. Then, we will describe the variance of the model output 𝑓(𝑥𝑡, 𝑤̂) for a fixed 𝑥𝑡. Finally, we will find
the expected variance over the distribution of 𝑥𝑡.

Variance of parameter estimate

Recall that 𝜖𝑖 are independent for different samples, with 𝐸[𝜖𝑖] = 0 and 𝑉 𝑎𝑟(𝜖) = 𝜎2
𝜖 .

Then,

𝐶𝑜𝑣(𝜖𝑖, 𝜖𝑗) = {0, 𝑖 ≠ 𝑗
𝜎2

𝜖 , 𝑖 = 𝑗

so the variance matrix for the 𝜖 noise is

𝑉 𝑎𝑟(𝜖) = 𝜎2
𝜖 𝐼

(𝐼 is the identity matrix). Also recall from our discussion of bias that with no under-modeling,

𝑤̂ = 𝑤𝑡 + (Φ𝑇 Φ)−1Φ𝑇 𝜖
Let us think of this as a linear transform of 𝑤̂, 𝑦 = 𝐴𝑥 + 𝑏 where:

• 𝑦 = 𝑤̂
• 𝐴 = (Φ𝑇 Φ)−1Φ𝑇
• 𝑥 = 𝜖
• 𝑏 = 𝑤𝑡

and recall that for a linear transform 𝑦 = 𝐴𝑥 + 𝑏, 𝑉 𝑎𝑟(𝑦) = 𝐴𝑉 𝑎𝑟(𝑥)𝐴𝑇 .
Then we can compute the variance matrix of the parameter estimate for the linear model as

𝑉 𝑎𝑟(𝑤̂) = [(Φ𝑇 Φ)−1Φ𝑇 ][𝑉 𝑎𝑟(𝜖)][(Φ𝑇 Φ)−1Φ𝑇 ]𝑇
= [(Φ𝑇 Φ)−1Φ𝑇 ][𝜎2

𝜖 𝐼][(Φ𝑇 Φ)−1Φ𝑇 ]𝑇
= [(Φ𝑇 Φ)−1Φ𝑇 ][𝜎2

𝜖 𝐼][Φ(Φ𝑇 Φ)−1]
= 𝜎2

𝜖 (Φ𝑇 Φ)−1

Variance of model output

Now, we will use 𝑉 𝑎𝑟(𝑤̂) to compute 𝑉 𝑎𝑟(𝑥𝑡) for the linear model.
First, recall from our discussion of bias that when there is no under-modeling

𝐸[𝑓(𝑥𝑡, 𝑤̂)] = 𝜙(𝑥𝑡)𝑇 𝑤̂ = 𝜙(𝑥𝑡)𝑇 𝑤𝑡

Then the variance of the linear model output for a test point is
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𝑉 𝑎𝑟(𝑥𝑡) = 𝐸[𝑓(𝑥𝑡, 𝑤̂) − 𝐸[𝑓(𝑥𝑡, 𝑤̂)]]2
= 𝐸[𝜙(𝑥𝑡)𝑇 𝑤̂ − 𝜙(𝑥𝑡)𝑇 𝑤𝑡]2
= 𝐸[𝜙(𝑥𝑡)𝑇 (𝑤̂ − 𝑤𝑡)]2

Also note the following trick: if 𝑎 is a non-random vector and 𝑧 is a random vector, then

𝐸[𝑎𝑇 𝑧]2 = 𝐸[𝑎𝑇 𝑧𝑧𝑇 𝑎] = 𝑎𝑇 𝐸[𝑧𝑧𝑇 ]𝑎
Therefore,

𝑉 𝑎𝑟(𝑥𝑡) = 𝐸[𝜙(𝑥𝑡)𝑇 (𝑤̂ − 𝑤𝑡)]2
= 𝜙(𝑥𝑡)𝑇 𝐸[(𝑤̂ − 𝑤𝑡)(𝑤̂ − 𝑤𝑡)𝑇 ]𝜙(𝑥𝑡)

Finally, recall that

𝑉 𝑎𝑟(𝑤̂) = 𝐸[(𝑤̂ − 𝑤𝑡)(𝑤̂ − 𝑤𝑡)𝑇 ] = 𝜎2
𝜖 (Φ𝑇 Φ)−1

so

𝑉 𝑎𝑟(𝑥𝑡) = 𝜙(𝑥𝑡)𝑇 𝐸[(𝑤̂ − 𝑤𝑡)(𝑤̂ − 𝑤𝑡)𝑇 ]𝜙(𝑥𝑡)
= 𝜎2

𝜖 𝜙(𝑥𝑡)𝑇 (Φ𝑇 Φ)−1𝜙(𝑥𝑡)
This derivation assumed there is no under-modeling. However, in the case of under-modeling, the vari-
ance expression is similar.
For the next part, we will compute the variance term from the in-sample prediction error, i.e. the error if
the test point is randomly drawn from the training data:

• Training data is (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛
• 𝑥𝑡 = 𝑥𝑖 with probability 1

𝑛
Each row of Φ is a vector 𝜙(𝑥𝑖) for sample 𝑖, then

Φ𝑇 Φ =
𝑛

∑
𝑖=1

𝜙(𝑥𝑖)𝜙(𝑥𝑖)𝑇

We will use a trick: for random vectors 𝑢, 𝑣, 𝐸[𝑢𝑇 𝑣] = 𝑇 𝑟(𝐸[𝑣𝑢𝑇 ]), where 𝑇 𝑟(𝑋) is the sum of
diagonal of 𝑋.
Then the expectation (over the test points) of the variance of the model output is:

4



𝐸[𝑉 𝑎𝑟(𝑥𝑡)] = 𝜎2
𝜖 𝐸[𝜙(𝑥𝑡)𝑇 (Φ𝑇 Φ)−1𝜙(𝑥𝑡)]

= 𝜎2
𝜖 𝑇 𝑟 (𝐸[𝜙(𝑥𝑡)𝜙(𝑥𝑡)𝑇 ](Φ𝑇 Φ)−1)

= 𝜎2
𝜖

𝑛 𝑇 𝑟 (
𝑛

∑
𝑖=1

[𝜙(𝑥𝑖)𝜙(𝑥𝑖)𝑇 ](Φ𝑇 Φ)−1)

= 𝜎2
𝜖

𝑛 𝑇 𝑟 ((Φ𝑇 Φ)(Φ𝑇 Φ)−1)

= 𝜎2
𝜖

𝑛 𝑇 𝑟 (𝐼𝑝)

= 𝜎2
𝜖 𝑝
𝑛

The average variance increases with the number of parameters 𝑝, and decreases with the number of
samples used for training 𝑛, as long as the test point is distributed like the training data.

Summary of results for linear regression
Suppose the model class is linear with 𝑛 samples and 𝑝 parameters.

Result 1: Uniqueness of coefficient estimate

When 𝑛 < 𝑝, the least squares estimate of the coefficients is not unique.

Result 2: Bias of estimate of target variable

When𝑛 ≥ 𝑝 and the least squares estimate of the coefficients is unique, and there is no under-modeling,
then the estimate of the target variable is unbiased.

Result 3: Variance of estimate of target variable

When 𝑛 ≥ 𝑝, the least squares estimate of the coefficients is unique, there is no under-modeling, and
the test point is drawn from the same distribution as the trainng data, then the variance of the estimate
of the target variable increases linearly with the number of parameters and inversely with the number of
samples used for training:

𝑉 𝑎𝑟 = 𝑝
𝑛𝜎2

𝜖

Result 4: Overall prediction error

The overall expected in-sample prediction error for the ordinary least squares linear regression is

0 + 𝑝
𝑛𝜎2

𝜖 + 𝜎2
𝜖

where the three terms represent the squared bias, the variance, and the irreducible error.

5


	Linear basis function model
	Unique solution to ordinary least squares estimate
	Bias of linear model
	Random vectors
	Variance of linear model
	Variance of parameter estimate
	Variance of model output

	Summary of results for linear regression
	Result 1: Uniqueness of coefficient estimate
	Result 2: Bias of estimate of target variable
	Result 3: Variance of estimate of target variable
	Result 4: Overall prediction error


