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Supposewe have a series of data points{(𝐱𝟏, 𝑦1), (𝐱𝟐, 𝑦2), … , (𝐱𝐧, 𝑦𝑛)} and there is some (unknown)
relationship between 𝐱𝐢 and 𝑦𝑖. Furthermore, the target variable 𝑦 is constrained to be either a 0 or 1:
a 1 label is considered a positive label, and a 0 label is considered a negative label.
We also have a black box model that, given some input 𝐱𝐢, will produce as its output an estimate of 𝑦𝑖,
denoted ̂𝑦𝑖. This model is called a binary classifier.
The question we will consider in these notes - without knowing any details of the classifier model - is
how can we evaluate the performance of the classifier?

Possible outcomes

Consider a classifier model that is trained to identify cat photographs. Its output is ̂𝑦 = 1 if it thinks the
photograph is of a cat, and ̂𝑦 = 0 otherwise.
For each prediction the classifier makes, there are four possible outcomes:

• True positive: 𝑦 = 1, ̂𝑦 = 1. This is a correct prediction.
• False positive: 𝑦 = 0, ̂𝑦 = 1. This is called Type 1 error. (Also known as a false alarm.)
• False negative: 𝑦 = 1, ̂𝑦 = 0. This is called Type 2 error. (Also known as a missed detection.)
• True negative: 𝑦 = 0, ̂𝑦 = 0. This is a correct prediction.

Figure 1: Four outcomes for a cat photograph classifier.
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The number of true positive (TP) outcomes, true negative (TN) outcomes, false positive (FP) outcomes,
and false negative (FN) outcomes, are often presented together in a confusion matrix:

Actual ↓ Pred. → 1 0
1 TP FN
0 FP TN

We may also define two more quantities:
• The number of actual positive values (when 𝑦 = 1) P = TP+FN, is the sum of the “actual positive”
cells.

• The number of actual negative values (when 𝑦 = 0) N = FP+TN is the sum of the “actual negative”
cells.

The total population, P + N, is the total number of samples.

Metrics related to error

The most basic classifier performance metric is accuracy, defined as

𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝐹𝑃 + 𝑇 𝑁 + 𝐹𝑁 = 𝑇 𝑃 + 𝑇 𝑁

𝑃 + 𝑁
i.e., the portion of samples classified correctly.
However, accuracy is not always a useful metric. For example, imagine you are training a model to classify
credit card transactions as fraudulent (1) or not fraudulent (0), but only 1% of transactions are fraudulent.
A very basic classifier that always outputs 0 will have 99% accuracy! It is clear that accuracy is not a very
useful metric here.
For a data set with highly imbalanced classes (𝑃 >> 𝑁 or 𝑃 << 𝑁 ), balanced accuracy is often a
more appropriate metric:

1
2 (𝑇 𝑃

𝑃 + 𝑇 𝑁
𝑁 )

Balanced accuracy gives the proportion of correct predictions in each class, averaged across classes.
In addition to the overall accuracy, a number of other metrics are used in various contexts. These are
defined in terms of the four basic numbers described above: TP, FN, FP, TN.

• True Positive Rate (TPR) also called recall or sensitivity:

𝑇 𝑃𝑅 = 𝑇 𝑃
𝑃 = 𝑇 𝑃

𝑇 𝑃 + 𝐹𝑁 = 𝑃( ̂𝑦 = 1|𝑦 = 1)

• True Negative Rate (TNR) also called specificity:

𝑇 𝑁𝑅 = 𝑇 𝑁
𝑁 = 𝑇 𝑁

𝐹𝑃 + 𝑇 𝑁 = 𝑃( ̂𝑦 = 0|𝑦 = 0)

• Positive Predictive Value (PPV) also called precision:
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𝑃𝑃𝑉 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 = 𝑃(𝑦 = 1| ̂𝑦 = 1)

• Negative Predictive Value (NPV):

𝑁𝑃𝑉 = 𝑇 𝑁
𝑇 𝑁 + 𝐹𝑁 = 𝑃(𝑦 = 0| ̂𝑦 = 0)

• False Positive Rate (FPR):

𝐹𝑃𝑅 = 𝐹𝑃
𝑁 = 𝐹𝑃

𝐹𝑃 + 𝑇 𝑁 = 1 − 𝑇 𝑁𝑅 = 𝑃( ̂𝑦 = 1|𝑦 = 0)
• False Discovery Rate (FDR):

𝐹𝐷𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇 𝑃 = 1 − 𝑃𝑃𝑉 = 𝑃(𝑦 = 0| ̂𝑦 = 1)

• False Negative Rate (FNR):

𝐹𝑁𝑅 = 𝐹𝑁
𝐹𝑁 + 𝑇 𝑃 = 1 − 𝑇 𝑃𝑅 = 𝑃( ̂𝑦 = 0|𝑦 = 1)

• False Omission Rate (FOR):

𝐹𝑂𝑅 = 𝐹𝑁
𝐹𝑁 + 𝑇 𝑁 = 1 − 𝑁𝑃𝑉 = 𝑃(𝑦 = 1| ̂𝑦 = 0)

These metrics are illustrated in the following table:

Figure 2: Selected classifier metrics.

Another metric, known as F1 score, combines precision ( 𝑇 𝑃
𝑇 𝑃+𝐹𝑃 ) and recall ( 𝑇 𝑃

𝑇 𝑃+𝐹𝑁 ) in one metric:

𝐹1 = 2 (precision × recall
precision + recall

)

The F1 score is also considered more appropriate than accuracy when there is a class imbalance. F1 score
balances precision and recall: when both are similar in value, the F1 score will also be close to their value.
However, if either precision or recall is lower, the F1 score will be “dragged down” by the lower metric.
The most appropriate choice of metric for evaluating a classifier depends on the context - for example,
whether there is class imbalance, and what the relative cost of each type of error is.
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Tradeoff between FPR and TPR using thresholds

It is trivial to build a classifier with no Type 1 error (no false positives) - if the classifier predicts a negative
value for all samples, it will not produce any false positives. However, it also won’t produce any true
positives! (Similarly, it is trivial to build a classifier with no Type 2 error, by predicting a positive value for
all samples. This model will have no false negatives, but also no true negatives.)
We can often adjust the tradeoff between the FPR and TPR, depending on the cost of each type of er-
ror. Many classifiers are actually soft decision classifiers, which means that their output is a probability,
𝑃(𝑦 = 1|𝐱).
(This is in contrast to hard decision classifiers, whose output is a label, e.g. 0 or 1.)
We get a “hard” label from a “soft” classifier by setting a threshold 𝑡, so that:

̂𝑦 = {1, 𝑃 (𝑦 = 1|𝐱) ≥ 𝑡
0, 𝑃 (𝑦 = 1|𝐱) < 𝑡

By tuning this threshold we can adjust the tradeoff between FPR and TPR.
For example, consider our cat photo classifier from earlier, but suppose it is a soft decision classifier:

Figure 3: Soft decision classifier for cat photos.

The performance of this classifier depends on where we set the threshold 𝑡 for a positive prediction:
• If we set the threshold at 50%, this classifier has one TP, one TN, one FP, and one FN on the data
shown. (𝑇 𝑃𝑅 = 0.5, 𝐹𝑃𝑅 = 0.5.)

• What if the cost of missing a “true” cat is high, but the cost of accidentally classifying a non-cat as
a cat is low? Then we might set the threshold at 25%. The classifier then has two TPs, one TN, and
one FP. (𝑇 𝑃𝑅 = 1, 𝐹𝑃𝑅 = 0.5.)

• What if the cost of missing a “true” cat is low, but the cost of accidentally classifying a non-cat as
a cat is high? Then we might set the threshold at 75%. The classifier then has one TP, two TNs, and
one FN. (𝑇 𝑃𝑅 = 0.5, 𝐹𝑃𝑅 = 0.)
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The label applied by the classifier depends on where we set the threshold, the error metrics above also
depend on where we set the threshold. But, it’s useful to be able to evaluate the classifier performance
in general, instead of for a specific threshold. We do this by plotting the TPR vs. FPR for every possible
threshold, like in this plot:

Figure 4: Plot of TPR vs. FPR for the cat photo classifier.

This plot is know as the ROC curve (receiver operating characteristic). The shaded area underneath the
ROC curve is known as the AUC (area under the curve), and it is a classification-threshold-invariant way
of evaluating the classifier performance.
A random classifier that doesn’t use any information about the problem will have an AUC of 0.5 (if both
classes are equally prevalent in the data). A perfect classifier will have an AUC of 1. A typical machine
learning model will have an AUC somewhere between the two, with a number closer to 1 being a better
score.

Figure 5: Plot of TPR vs. FPR for the cat photo classifier.
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Multi-class classifier performance metrics

So far, we have only discussed a binary classifier. For a multi-class classifier, the output variable is no
longer restricted to 0 or 1; instead, we have 𝑦 ∈ 1, 2, ⋯ , 𝐾 where 𝐾 is the number of classes.
The same performance metrics apply to a multi-class classifier, with some minor modifications:

• The accuracy is the number of correct labels, divided by number of samples
• The balanced accuracy is a direct extension of two-class version: compute the per-class accuracy,
and average across classes.

• For other metrics, we can use pairwise comparisons between one class and all others, to compute
a per-class version of the metric.

• A soft-decision classifier will produce a vector of probabilities, one for each class.
The error of a multi-class classifier can also be visualized using a confusion matrix, for example:

Figure 6: Example of a multi-class confusion matrix, via Cross Validated.

Evaluating a classifier - some considerations

There is no universal rule for what makes a “good” classifier. It’s a common misconception that a “good”
classifier should achieve some high accuracy e.g. 95%, 99%, etc. Yet, we have seen that even a very
bad classifier will have high accuracy sometimes (if there is class imbalance). Meanwhile, for some very
difficult problems, even a classifier with much lower accuracy may be useful (if it still has higher accuracy
than any alternative solution). Finally, not all types of errors are equally “bad” - we may prefer a classifer
that makes more errors overall but fewer “bad” errors, over one that has fewer overall errors but more of
the “bad” type.
To decide whether a machine learning classifier is doing a “good job”, here are some helpful questions
to ask yourself:

• Does the model have better performance than a “simple” model that always predicts the more
common class (i.e. “prediction by mode”)?

• Does the model have better performance than an alternative solution (e.g. a rule-based implemen-
tation), if one is available?

• Are all types of error equally “expensive” in context, or are some types (e.g. false positive, false nega-
tive) more costly? Is the rate of the “expensive” error small? (Also note that different “stakeholders”
may care more about some types of errors than other types.)
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Questions
(You can check your answers to the first four questions here.)

1. In which of the following scenarios does the accuracy value suggest that the ML model is doing a
good job?

• In the game of roulette, a ball is dropped on a spinning wheel and eventually lands in one of 38 slots.
Using visual features (the spin of the ball, the position of the wheel when the ball was dropped, the
height of the ball over the wheel), an ML model can predict the slot that the ball will land in with
an accuracy of 4%.

• A deadly, but curable, medical condition afflicts .01%of the population. AnMLmodel uses symptoms
as features and predicts this affliction with an accuracy of 99.99%.

• An expensive robotic chicken crosses a very busy road a thousand times per day. An ML model
evaluates traffic patterns and predicts when this chicken can safely cross the street with an accuracy
of 99.99%.

2. Consider a classification model that separates email into two categories: “spam” or “not spam.” If
you raise the classification threshold, what will happen to precision?

• Probably increase
• Probably decrease
3. Consider a classification model that separates email into two categories: “spam” or “not spam.” If

you raise the classification threshold, what will happen to recall?
• Always stay constant
• Either decrease, or stay the same
• Always increase
4. Consider two models—A and B—that each evaluate the same dataset. Which one of the following

statements is true?
• If model A has better recall than model B, then model A is better.
• If Model A has better precision than model B, then model A is better.
• If model A has better precision and better recall than model B, then model A is probably better.
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https://developers.google.com/machine-learning/crash-course/classification/check-your-understanding-accuracy-precision-recall
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