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Deploying machine learning systems
Until now - model development

Figure 1: Machine learning model development.

Note: we know that these are not separate, isolated steps - for example, if data exploration shows a non-
linear relationship between feature and target, we might add a non-linear transformation in the data
preparation step, if the model we will train is not already capable of learning non-linear relationships.

Next step - model deployment

Figure 2: Machine learning model development + deployment.

In production, a model might be behind an API that can be called on demand by online services, be
deployed on an edge or mobile device, or do batch prediction.

Thinking about production: before model development

Figure 3: Thinking about production service before model development.

Check out Introduction to Machine Learning Problem Framing for more on this!
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Re-thinking model development: After model deployment (1)

Figure 4: Re-thinking after model deployment.

Two sets of metrics for models deployed “in production”:
• optimizing metrics, e.g.: how accurate is it, how fair are its predictions.
• operational metrics, e.g.: how long does it take to return a prediction (inference latency), howmuch
does it cost (energy, infrastructure rental) to return one result.

Re-thinking model development: After model deployment (2)

Figure 5: Re-thinking after model deployment.

Evaluating a model in production (optimizing metrics) is often not straightforward, we often don’t have
ground truth -

• Some problems have natural ground truth labels: for example, you can predict how long a customer
will wait on hold, then time how long they actually waited.

• Sometimes you can get labels from users, explicitly or implicitly: for example, you can add a “report
not spam” button on emails that were classified as spam, or you can infer that they are not spam if
a user moves it from spam folder to inbox. (But, response rates may be low.) (Users labels may not
be good - will a user know whether a translation is acceptable or not?)

But, getting labels in production is often problematic -
• ML system itself influences outcome: for example, you use an ML system to identify students at risk
of failing end-of-year reading exams, to get extra resources to them. At the end of the year, some
students who got extra help passed the exam. Was your prediction wrong? (In some cases, wemight
sacrifice some performance with a “held out” set - e.g. mark 1% of email as “held out” and send all
to user, even those classified as spam, and see what the user does with it!)

• Feedback loop may be long: for example, you use an ML system to show users a movie that they
may like, and you consider a recommendation successful if the user then watches the movie. But,
they may watch it hours, days, weeks after it is first recommended! Your initial inferred label may
be premature.

We want labeled production data for evaluation, and potentially for future re-training!
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Training-serving skew
Data distribution shift

Between training and production (or later in production), things may change e.g.:
• the environment in which your service operates, changes (sudden or gradual)
• feedback loop: your production service changes the environment
• something in the “other pieces” changes

Example of “something in the other pieces” changing:
• Your model uses a weather API to get temperature as a feature for input to model. The API changes
its default reporting format from Farenheit to Celsius.

• Your credit card expires, so the weather API refuses your requests and your data processing code
automatically fills in a NaN for temperature features.

Types of data distribution shift

Given model input 𝑋, target 𝑦:

𝑃(𝑋, 𝑦) = 𝑃 (𝑦|𝑋)𝑃(𝑋) = 𝑃(𝑋|𝑦)𝑃 (𝑦)
Three types of “shifts”: covariate, label, concept.

Covariate shift

Using 𝑃 (𝑋, 𝑦) = 𝑃(𝑦|𝑋)𝑃(𝑋) -
• 𝑃(𝑋) changes
• 𝑃(𝑦|𝑋) stays the same

Example: you are predicting breast cancer risk given an input feature age. Your training data comes
from a clinic where patients are evaluated for breast cancer, so that “source” distribution trends older.
However, your model is deployed in a smartphone app and users trend younger. (But, the probability of
a young/old sample getting breast cancer has not changed.)

Figure 6: Breast cancer risk vs. age with covariate shift.
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Label shift

Using 𝑃 (𝑋, 𝑦) = 𝑃(𝑋|𝑦)𝑃 (𝑦) -
• 𝑃(𝑦) changes
• 𝑃(𝑋|𝑦) stays the same

In the previous example (breast cancer risk), we would also see label shift - with younger users, you would
see fewer positive samples.
But, we could also have a scenario with label shift but no covariate shift. Example: a medicine is de-
veloped that reduces breast cancer risk among all age groups. 𝑃(𝑦) is smaller (less breast cancer), but
given a positive sample, the likelihood of being old/young has not changed.

Figure 7: Breast cancer risk vs. age with label shift.

Concept drift

Using 𝑃 (𝑋, 𝑦) = 𝑃(𝑦|𝑋)𝑃(𝑋) -
• 𝑃(𝑦|𝑋) changes
• 𝑃(𝑋) has not changed

Example: a vaccine is developed that, if given to teenagers, reduces their risk of developing breast cancer
in their lifetime. Since the availability of the vaccine depends on age, the relationship between age and
cancer risk will change.

Figure 8: Breast cancer risk vs. age with concept drift.

Example: predicted price for a non-stop red-eye flight from NYC to Paris changes -
• may be cyclic/seasonal: more expensive during summer months, or around holidays
• or not: more expensive around Paris 2024 Olympics
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Deploying better machine learning systems
Model re-training

Figure 9: To address training-serving skew, we need to re-train when performance drops.

“Level zero”

Figure 10: An ML deployment at maturity/automation “level zero”.

Improving on level zero

With our previous workflow, it would be very expensive (in person-hours) to re-train model, so we
wouldn’t want to do it as often as necessary. To make it less “expensive”, we need to:

• close the feedback loop: collect data from production
• monitor for data/performance problems
• automate data → model → service pipeline

The trigger to re-train model can be time-based, performance-based, or data-drift-based.
Note that the “deliverable” that the ML team hands off is no longer a trained model - now it’s source code
and/or configuration files defining a pipeline, that generates the trained model.
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Figure 11: A more mature/automated deployment pipeline.

Operations!
Operational metrics for training

Training is expensive!
There may be multiple ways a given “optimizing metric” target (e.g. “achieve 99% validation accuracy”),
with different costs. e.g., the metrics

• time to accuracy (TTA)
• energy to accuracy (ETA)

may depend on batch size, learning rate, network size/architecture…

Operational metrics for inference

• prediction serving latency (how long to return one result for one input?)
• throughput (when running on a large batch, how many outputs per unit time?)
• model size (especially if it will be deployed on mobile device/at edge)
• energy, cost…

Batch vs. online inference
• Batch/offline: inference on large dataset, need high throughput
• Online: inference for one sample at a time, typically user is waiting for response, need low latency

Minimizing prediction serving latency

To minimize the overall prediction serving latency, we would want to reduce the time:
• to get input features (retrieve data, compute features)
• to compute one prediction (inference latency)
• to get query from/deliver the result to user
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Figure 12: There are several separate, but related, elements that make up prediction serving latency.

Idea 1: Model architecture

• Use base model that’s small/specifically designed for efficient inference (e.g. MobileNet)
• Use big model, but prune activations that are usually zero
• Use knowledge distillation: train a small model to match “soft” predictions of big model
• Potentially some impact on “optimizing metrics”

Idea 2: Model compression

• Reduced precision/quantization: use 16-bit floats (half precision) or 8-bit integers (fixed-point) in-
stead of 32-bit floats (full precision)

• Can fit more numbers (weights, etc.) in “fast” memory
• Can perform faster computation
• Potentially some impact on “optimizing metrics” (quantization error)

Idea 3: Hardware acceleration

• Use chips that are “good at” basic ML operations (matrix multiplication, convolution)
• Add specialized memory/data paths for ML (e.g. local fast cache for network weights)

How did GPUs become so important for machine learning?
• GPUs were originally designed to do graphics e.g. for video games - most of the computations in
graphic rendering are linear algebra, e.g. matrix operations.

• Also designed for high data parallelism - compute same thing on many data elements (e.g. same
shading function on many polygons). (Not like multi-core CPUs which have task parallelism - com-
pute different functions.)

• In early 2000s: shift toward programmable GPUs - NVIDIA released APIs for general purpose compu-
tation on GPU.

Summary of tradeoffs:
CPU: low cost, low power general computation. GPU: can quickly do a big linear algebra operation on a
bunch of data samples at once.

Where should inference happen: Cloud

• lots of compute
• potentially costly
• can dynamically adapt to workload
• subject to network performance
• don’t need to distribute model
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Where should inference happen: Edge

• less compute,
• limited memory/disk
• good for user data privacy
• not subject to network performance
• but not good for model privacy

Summary
• Consider ML model development + deployment together
• In practice, ML engineers develop pipelines, not models
• Often tension between optimizing metrics + operational metrics
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