Reinforcement learning
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Reinforcement learning
Elements of RL (1)

 An agent acts in an environment
+ The agent sees a sequence of observations about the environment
« The agent wants to achieve a goal, in spite of some uncertainty about the environment.

May need to consider indirect, delayed result of actions.

Elements of RL (2)

« The state of the agent at time ¢ is S, (from s € &)

- The agent chooses action A, at time t (from a € A)

- The agent earns a reward R, for its actions

- The next state is determine by current state and current action, using a (possibly stochastic) state
transition function d(s, a):

P(s',r|s,a) =P[S,,, =5, R,y =7|S;, = 5,4, = d

Elements of RL (3)

Over interactions in 1" time steps, the agent takes a sequence of actions and observes next states and
rewards.

This sequence of interactions is called a trajectory:

S1, A1, Ry, Sy, Ay, ., Sy

What are all the things an agent might try to learn?

Elements of RL (4)

- the policy 7 is the agent’s mapping from state to action (or probabilities of action)

+ the environment sends a reward back to the agent, depending on its state and action (may be
stochastic), and a value function describes expected total future reward from a state

+ we may sometimes have/learn a model of the environment, which we can use to plan before or
during interactions with the environment



Taxonomy of RL agents
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Figure 1: Taxonomy of RL agents.

Policy-based: build an explicit representation of policy m: S — A

« Value-based: try to learn what is the expected total reward for each state or state-action pair. Then
there is an implicit policy: select the action that maximizes that.

« Actor-critic methods use both policy and value function learning.

+ Model-based: uses either a known or learned model of the environment.

+ Model-free: does not know or try to learn the model.

+ (Model-free methods interact with the environment by trial-and-error, where model-based methods

can plan for future situations by computation on the model.)



The optimization problem
Reward

Suppose the state transition function is

P(s',r|s,a) =P[S,,, =5, R,y =7]S;, = 5,4, =d

the reward for a state-action will be

R(s,a) = E[R,,,|S, =s,A, =a] = Zr Z P(s’,r|s,a)

reR s'eS

The state transition function gives the probability of transitioning from state s to s’ after taking action
a, while obtaining reward 7.

Policy

We want to find a policy, or a probability distribution over actions for a given state:
m(als) =P, [A =al|S = 5]

Value function

Let future reward (return) from time ¢ on be

Gy =Ry +7Ry o+ = Z’Yth+k+1
k=0

where the discount factor 0 < v < 1 penalizes future reward.

State-value

The state-value of a state s is the expected return if we are in the state at time t:
Vi(s) = E;[G|S, = ]

Action-value

The action value of a state-action pair is
Qﬂ(s7a> = [ETr[Gt‘St = S7At = (l]

Relationship between Q and V

For a policy 7, we can sum the action values weighted by the probability of that action to get:

Va(s) = ) Quls,a)m(als)

acA



Action advantage function

The difference between them is the action advantage:

Ar(s,0) = Qr(s,a) = Vi(s)

“Taking this action in this state” vs. “getting to this state.”

Optimal value function

The optimal value function maximizes the return (future expected reward):

V.(s) = max V_(s)

Q.(s,a) = max Q. (s, a)

Optimal policy

The optimal policy achieves the optimal value functions:
7, = argmax V_(s)
™
7, = argmax Q. (s,a)
™
e,V (s) = Vi(s) and Q. (5.0) = Q.(s. a).

Optimal policy breakdown

We can also think of it as the policy that maximizes current reward + discounted value of next state:
m, = argmaxr(s,a) +yVi(i(s,a))
™
How do we learn this policy?

 what is the loss function?
« what are the training samples?



Q learning
Q table

» Each row is an action
» Each column is a state

* Q(S7 a’) = T(S, a’) + WV*((S(‘,S] a’))
- Table stores current estimate Q(s, a)

Iterative approximation

« start with random values

- observe state, then iteratively:

choose action a and execute,

observe immediate reward r and new state s’
. / /

update Q(s, a) usingr + ymax, Q(s’,a’)

s+ &

Exploration and exploitation

If we only take the best actions we know about, we might miss out on learning about other, better actions!

- exploration: take some action to find out about environment, even if you may miss out on some
reward

- exploitation: take the action that maximizes reward, based on what you know about the environ-
ment.

e-greedy policy

« With probability €, choose random action
« With probability 1 — ¢, choose optimal action
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