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Unsupervised learning
The basic supervised learning problem

Given a sample with a vector of features

X = (X1, Zq, .., Ty)

There is some (unknown) relationship between x and a target variable, i, whose value is unknown.

We want to find ¥, our prediction for the value of .

Supervised learning

Input for current sample
x = Ly x2, x31

winimize 1/N E(g-3

Figure 1: Basic supervised learning problem.

The basic unsupervised learning problem

Given a sample with a vector of features

X = (T1,Zq, ..., Tyq)

We want to learn something about the underlying structure of the data.

No labels!
Input For current sample
i x = L, x2, x31
"Here's one group of similar
:&te‘“ ® samples and ancther
group of simlar samples”

"“This one sawmple is not

% % ?% g like the others.”
“Here is ancther representation

x i - of these samples.”
x "Mw\y of your samples are like ths,

and a smaller number of samples are
lke that."

Figure 2: Unsupervised learning.



What are some things we might be able to learn about the structure of the data?

« dimensionality reduction
- feature representation

« embedding

« clustering

+ anomaly detection

« density estimation

Anomaly detection (density estimation)

Cluste,r:n3 b;mensiomhty reduction Feature representation
cat
o
N doy dog m

wolf cat hawk L cat .
ion '

lion chicken wolf wolf chicken wolf

chicken howk coffee

howk

Figure 3: Unupervised learning problems.

Dimensionality reduction with PCA
Why?

« Supervised ML on small feature set
- Visualize data
« Compress data

Dimensionality reduction problem

- Given N X p data matrix X where each row is a sample x,,
- Problem: Map datato N X p’ wherep’ < p

Dimensionality reduction with PCA vs feature selection

Previous feature selection:

+ Choose subset of existing features
+ Many features are somewhat correlated; redundant information

Now: new features, so we can get max information with min features.

Students i intre ML Reduce dimensionality using existing Features Reduce dimensionality with new feature space

%
]
¢, [
°
g
H
<
-
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i | @
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i hours spent reviewing ML course materials i hours spent reviewing ML course. materials
What do we woant out of the new Feature space?
- winimize reconstruction error for Pru:le_cteol data

- waximize the variance of the projected data

Figure 4: Instead of using existing features, we project the data onto a new feature space.



Projections

Given vectors z and v, 6 is the angle between them. Projection of z onto v is:

vz ]l

z="Proj (2) =av, a=— = 7—cosb
TN T
V = {aw|a € R} are the vectors on the line spanned by v, then Proj, (2) is the closest vector in V' to
2 2 = argmin, ||z — wl|*.

— >

Projection of =
orto v

Figure 5: Projection of z onto v.

PCA intution (1)
2 . .:‘
' gogf it e
0 . o‘ o“‘..
1 . .:i::tsi::c )
Figure 6: Data with two features, on two axes. Data is centered.
PCA intuition (2)

Figure 7: Construct a new feature by drawing a line w, x; + w425, and projecting data onto that line (red
dots are projections). View animation here.


https://stats.stackexchange.com/a/140579/41284

PCA intuition (3)

Project onto which line?
 Maximize average squared distance from the center to each red dot; variance of new feature
+ Minimize average squared length of the corresponding red connecting lines; total reconstruction
error
Can you convince yourself that these two objectives are related, and are achieved by the same projection?

e
N 0:.\0.1«'—

PO 4
WA N
e = Vil

— reconstruction error

—_

ll\/TxlIA — Variance of Pr‘o;\ec‘ted dato
Figure 8: Pythagorean decomposition. Keeping reconstruction error minimized (on average) is the same
as keeping variance of projection high (on average).

The intuition is that, by Pythagorean decomposition: the variance of the data (a fixed quantity) is equal
to the variance of the projected data (which we want to be large) plus the reconstruction error (which we

want to be small).

Sample covariance matrix (1)

« sample varlances = NZZ 1( )2

- sample covariance s, = + Zi:l( i — )y, — )
- Cov(x,y) isap X p matrix () with components:

K — Tp) (2 —Tp)

Mz

Qi =

:1

Note: x and ¥ in this notation are two different features, not a feature matrix and label.

Covanriance matrix

Variance of x

Covariance of x; y Variance of y

Figure 9: Illustration of covariance matrix.



Sample covariance matrix (2)

Let X be the data matrix with sample mean removed, row T, = x, — &

Sample covariance matrix is:

1 e
= —XTX
©=w

(compute covariance matrix by matrix product!)

Directional variance

Projection onto a unit vector v: 2; = (vI'%;)v

- Sample mean: z = v1' %

- Sample variance: 52 = v Qu
z

Now we have these mean-removed rows of data, and we want to project each row onto some vector v,

where z is the projection of Z'; onto v. And we want to choose v to maximize the variance of z, s2.

We will call this the directional variance - the variance of the projection of the row onto v.

Maximizing directional variance (1)

Given data Z,, what directions of unit vector v (||v|| = 1) maximizes the variance of projection along
direction of v?

maxvT Qu st||v]| =1
v

Important note:

- an eigenvector is a special vector that, when you multiply the covariance matrix by the eigenvector,
the result is a shorter or longer eigenvector pointing in the same direction.

« the eigenvalue is the value by which eigenvector is scaled when multiplied by the covariance matrix.

« ap X p matrix has p eigenvectors.

« the eigenvectors are orthogonal.

Covariance matrix

[1]
.
x rD
y J:l D E] Eigenvalue ,:]

Eigenvector

.00
00
i

Figure 10: Eigenvectors and eigenvalues.



Maximizing directional variance (2)

Let vy, ..., v, be eigenvectors of () (there are p):

- Sort them in descending order: A\; > Ay > - )\p.

- The largest one is the vector that maximizes directional variance, the next is direction of second
most variance, etc.

Theorem: any eigenvector of () is a local maxima of the optimization problem
maxvl Qu st||v]| =1
v
Proof: Define the Lagrangian,

L(v,A) = v"Qu— A[|[v][* —1]

At any local maxima,

a—Lzo = Qu—XAv=0
v

Therefore, v is an eigenvector of ().

For a nice, detailed proof of this, | recommend this set of notes by Cosma Shalizi at CMU.

Projections onto eigenvectors: uncorrelated features

« Eigenvectors are orthogonal: Uijk =0ifj#k
« So the projections of the data onto eigenvectors are uncorrelated

These are called the principal components

PCA intuition (5)

Figure 11: In the animation, gray and black lines form a rotating coordinate frame. When variance of pro-
jection is maximized, the black line points in direction of first eigenvector of covariance matrix (direction
of maximum variance of the data), and grey line points toward second eigenvector (direction of second-
most variance of the data). View animation here.


http://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch18.pdf
https://stats.stackexchange.com/a/140579/41284

PCA in summary (1)
Given high-dimensional data,

Center data (remove mean)

Get covariance matrix

. Get eigenvectors, eigenvalues

. Sort by eigenvalue

. Choose p’ eigenvectors with largest eigenvalues
6. Project data onto those eigenvectors

Now you have N X p’ data that maximizes info

Note: in practice, we compute PCA using singular value decomposition (SVD) which is numerically more
stable.

PCA

Input For current sampfe,
x = L, x2, x3]

i =
reduced dato E:tf
|ine_nd‘ Pr‘oje_ction orto
new Peature space
—

Systewm £
)]

i Reconstruction error

Figure 12: PCA summary.




Approximating data

Given data ¥, = 1,..., N, and PCs vy, ..., v,, We can project + then reconstruct the data:

p?

P
F=Y (I'F,)v,
j=1

<

Consider approximation with first d < p coefficients:

Average approximation error

For sample 2, error is:

The projection onto the first principal components carries the most information; the projection onto the
last principal components carries the least. So the error due to missing the last PCs is small!

Proportion of variance explained

The proportion of variance explained by d PCs is:

d
z]':1 )‘j

J=1"7J

. . . . 1 N ~ 12 D
where the denominator is variance of projected data: % > ._, ||%;[|* = ijl A
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Clustering
Clustering problem

- Given N x d data matrix X where each row is a sample z,,
+ Problem: Group data into K clusters
- More formally: Assign o,, = {1, ..., K} cluster label for each sample

- Samples in same cluster should be close: ||x,, — x,,|| is smallwhen o,, = 0,,

K-means clustering

We want to minimize

K
T=3" 3 (e — P2

i=1 neC|

* u; is the mean of each cluster
- 0, €{1,..., K} isthe cluster that x,, belongs to

K-means algorithm

Start with random (?) guesses for each ;. Then, iteratively:

- Update cluster membership (nearest neighbor rule): For every n,
_ : 2
0, = argmin ||z, — ;]
K3

- Update mean of each cluster (centroid rule): for every i, u, is average of z,, in C;

(Sensitive to initial conditions!)

Clustep‘n? (€3 me_oms): L/
1. Ro.mlcmly P‘o.r:_g cluster means
2. Assign each point to cluster

Assign points to
. cluster

(nearest neighbor rule) . ¢ . ‘
3. Update position of cluster weans ® °
4. Repeat steps 2, 3 ° o Cluster Nearest neighbor
5. Stop when the assignment of mean Celuster mean) of
cluster labels doesn't change . changes each point changes
.

Figure 13: K-means clustering.

T
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K-means visualization
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Figure 14: Visualization of k-means clustering.

K-means summary

Clustering

Input for current sample_
x = Lo, x2, 53]

L_') Cluster label, meon

tem £
)

Squared distance between points and cluster meons

K-meons c|uste,rin3 algon‘thm
Squared distance between points and cluster means

Figure 15: Clustering summary.
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Dimensionality reduction with deep learning
Dimensionality reduction using an autoencoder
An autoencoder is a learner that includes:

 Encoder: produces low-dimensional representation of input, x — 2
« Decoder: reconstructs an estimate of input from the low-dimensional representation, z —
« z known as latent variables, latent representation, or code

Autoencoder

Input for current smmplg
x = L, x2, x3]

Reconstructed sow\ple
Gntermediate representer ign)

System £ T
)

Reconstruction error
- Minimize reconstruction error

Figure 16: Autoencoder.

K-means as an autoencoder (1)

+ Encoder: map each data point to one of K clusters

« Decoder: “reconstruct” data point as center of its cluster
K-means as an autoencoder (2)

. Let X € R™ 4 pbe the data matrix containg n d-dimensional data points.
. Let Z be an X k matrix (if £ clusters) where each entry is all zeros, except for one 1
« Let D be a k x d matrix of cluster centers.

K-means as an autoencoder (3)

« Encoder performs non-linear mapping, expresses result as one-hot vector in Z.
» Decoder is linear:

X~X=2D

Note: Zwasn X k, Dwas k X d,so ZD willben X d.

PCA as an autoencoder (1)

. Let X € R™* be the (mean-removed) data matrix containg n d-dimensional data points.
 Let V be ad x k matrix of k eigenvectors with highest eigenvalues
« Z = XV isthe n x k matrix of PCA projections

cThen X ~ X = ZV7T

13



PCA as an autoencoder (2)

« Encoder: linear projection using k best principal components
« Decoder: also linear projection

Limits of PCA

 PCA learns linear projection
 Neural network with non-linear activation function can learn complex non-linear features

« Use neural network to do something like PCA?

Neural autoencoder

« Neural network with d inputs, d outputs

+ Use input as target

« (Self-supervised: creates its own labels)

« Train network to learn approximation of identity function

Neural autoencoder

Encoder Decoder
Latent

Q rqar'e,se,ntm‘t'.nn
x —= \ —= =z
@ e i — &

Figure 17: Neural autoencoder.

What should the architecture of the network be?

14



Overcomplete autoencoder

Figure 18: If we train this network to minimize reconstruction loss, it may literally learn the identity func-
tion - not useful.

Undercomplete autoencoder

LN

Figure 19: Is this network forced to learn a low-dimensional representation?

Sparse autoencoder (1)

- Does a small “bottleneck” force autoencoder to learn useful latent features?
« Even if “bottleneck” is very small, can still memorize data by encoding index
« Instead of limiting number of hidden nodes, add a penalty function on activations

Sparse autoencoder (2)

Allow many hidden units, but for a given input, most of them must produce a very small activation.

« Add penalty term to loss function, like regularization, but not on weights!
+ Penalty is on average activation value (over all the training samples)

15



Autoencoder comparison

+ Undercomplete autoencoder: uses entire network for each sample. Limits capacity to memorize,
but also limits capacity to extract complex features.

- Sparse autoencoder: different parts of network can “specialize” depending on input. Limits capacity
to memorize, but can still extract complex features.

What are autoencoders good for?

+ Not typically useful for compression - too data-specific

+ Can use to initialize supervised learning model - throw away decoder, fine-tune with classifier

+ Can use for dimensionality reduction for data visualization (often in combination with other unsu-
pervised learning methods)

 Can use for data denoising

Example: reconstruction of faces

Figure 20: Reconstruction of faces (top) by 30-D neural autoencoder (middle) and 30-D PCA (bottom).
Image via Hinton et al “Reducing the dimensionality of data with neural networks”, Science, 2006.

Example: MNIST visualization

Fig. 3. (A) The two- A
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

COENDO B WN = O

Figure 21: Image via Hinton et al “Reducing the dimensionality of data with neural networks”, Science,
2006.

16



Density estimation

Types of density estimation

- Explicit: define and solve for density (then sample from it if you want)
« Implicit: sample from density without defining it

GAN: Generative adversarial networks
* From Goodfellow et al 2014

Unsupervised, generative, implicit density estimation: Given training data, generate new samples
from same distribution

GAN: basic idea (1)

Two neural networks play a “game”:
Generator:

- takes random noise z drawn from p, as input,

generates samples, tries to trick “discriminator” into believing they are real
- learns parameters 6.

GAN: basic idea (2)

Discriminator:

- takes samples x drawn from p,., as input,

- produces classification ¥ (1=real, 0=fake),
- learns parameters ¢.

Discriminator loss function (1)

Discriminator wants to update its parameters ¢ so

» D () (output for real data) is close to 1
» D 4(Gp(2)) (output for generated data) is close to 0

Discriminator loss function (2)

Binary cross-entropy loss:

N N
— yilogDy(w;) — > (1 —y;)log(1 — Dy(x,))
=1 =1

Left side is for “true” samples and the right side is for “fake” samples
Discriminator objective

Replace sums with expectations, then discriminator wants to maximize

Eype 08 Dy ()] + B, [log(1 — Dy(Gy(2)))]

17


https://arxiv.org/abs/1406.2661

Generator objective (1)

Generator wants to update its parameters 6 so that:

» D 4(Gy(z)) (output for generated data) is close to 1
» Minimize £, _, [log(1 — D, (Gy(2)))]

Overall objective

mgin max Epp, 08Dy ()] + E, ., [log(1 — Dy(Gy(2)))]

Problem: gradient of cross-entropy loss
+ Cross-entropy loss designed to accelerate learning (steep gradient) when classifier is wrong
« Gradient is flat when classifier is correct, when generator needs to improve!

Generator objective (2)

* Instead, generator can do gradient ascent on the objective

log (D (Gy(2")))

* Instead of minimizing likelihood of discriminator being correct, now maximizing likelihood of
discriminator being wrong.

« Can still learn even when discriminator is successful at rejecting generator samples

Training: First, update discriminator

1. Get mini-batch of size m from data: 21, ... 2(™) ~ pdata
2. Get mini-batch of size mfrom noise input: z<1) m) D,
3. Forward pass get Gp(2! ) for each noise mput get Dy(x z9)) for each real sample, get

D4 (Gy(2")) for each fake sample.
4, Backward pass: gradient ascent on discriminator parameters ¢:

m

nll [log D, (2®) + tog(1 — Dy (Gy(=?)))]

%

Training: Then, update generator

5. Get mini-batch of size m from noise input: 21 ) z(m) ~D,
6. Forward pass: get G (2(*)) for each noise mput get D¢<G9( i))) for each fake sample.
7. Backward pass: gradient ascent on generator parameters 6:

> log (D, Gy()

18



Illustration: training discriminator

Noise somple_

n

Generator

Transformed
noise sampfc
6z), (0)

Discriminator

-l

True smplg

x )

-

Illustration: training generator

Noise sosmple_
z

Generotor Transformed

noise so.mple

-

&(z), (0)

-l

Gradient For
i upolating ¢ _| Diseriminator ob_‘lective.’
maximize
J‘ L= D6 2))  — fogU-D(é-:(.z)D (From Pake samples)
® 5 DG N + lo-j DO (From real samples)
E—
Figure 22: Training the discriminator.
Diseriminator
—
i Generator Db:le,c‘tivgg
[‘ % D(G)(Z))% WMOAWMIZE
] logB(&a))

Gradient For upola‘ting 7

Figure 23: Training the generator.
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