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Math prerequisites for this lecture: You should know
• matrix notation, matrix-vector multiplication (Section II, Chapter 5 in Boyd and Vandenberghe)
• inner product/dot product (Section I, Chapter 1 in Boyd and Vandenberghe)
• derivatives and optimization (Appendix C in Boyd and Vandenberghe)
• norm of a vector (Section I, Chapter 3 in Boyd and Vandenberghe)
• matrix inverse (Section II, Chapter 11 in Boyd and Vandenberghe)

In this lecture
• Simple (univariate) linear regression
• Multiple linear regression
• Linear basis function regression
• OLS solution for simple regression
• OLS solution for multiple/LBF regression
• Interpretation

With linear regression, as with all of the supervised learning models in this course, we will consider:
• The parts of the basic “recipe” (loss function, training algorithm, etc.)

and these four questions:
• What type of relationships 𝑓(𝑥) can it represent?
• What insight can we get from the trained model?
• How do we train the model efficiently?
• How do we control the generalization error?

For linear regression, we will consider the first two questions in this lesson, and the second two questions
in the next lesson.
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Regression
Regression - quick review

The output variable 𝑦 is continuously valued.
We need a function 𝑓 to map each input vector 𝐱𝐢 to a prediction,

̂𝑦𝑖 = 𝑓(𝐱𝐢)

where (we hope!) ̂𝑦𝑖 ≈ 𝑦𝑖.

Prediction by mean

Last week, we imagined a simple model that predicts the mean of target variable in training data:

̂𝑦𝑖 = 𝑤0

∀𝑖, where 𝑤0 = 1
𝑛 ∑𝑛

𝑖=1 𝑦𝑖 = ̄𝑦.
We can show that the mean is the one-parameter model that optimizes the mean squared error (MSE)
loss function:

𝐿(𝐰) = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑤0)2

Take the derivative of 𝐿(𝐰) with respect to 𝑤0

𝜕𝐿(𝐰)
𝜕𝑤0

= −2
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑤0)

and set it equal to zero:

−2
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑤0) = 0

Since we set it equal to zero, we can ignore that −2 factor -

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑤0) = 0

Now solve for 𝑤0:

𝑤0 = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖

This is the single parameter value that minimizes the mean squared error loss function.
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Prediction by mean, illustration

Figure 1: A “recipe” for our simple ML system.

Note that the loss function we defined for this problem - sum of squared differences between the true
value and predicted value - is the variance of 𝑦.
Under what conditions will that loss function be very small (or even zero)?

Figure 2: Prediction by mean is a good model if there is no variance in 𝑦. But, if there is variance in 𝑦, a
good model should explain some/all of that variance.

Mean, variance - definitions

Mean and variance:

̄𝑦 = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖, 𝜎2
𝑦 = 1

𝑛
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2

We are using the “biased” estimate of mean and variace, without Bessel’s correction.
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Simple linear regression
A “simple” linear regression is a linear regression with only one feature.

Regression with one feature

For simple linear regression, we have feature-label pairs:

(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, ⋯ , 𝑛
(we’ll often drop the index 𝑖 when it’s convenient.)

Simple linear regression model

Assume a linear relationship:

̂𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖

where 𝐰 = [𝑤0, 𝑤1], the intercept and slope, are model parameters that we fit in training.

Residual term (1)

There is variance in 𝑦 among the data:
• some of it is “explained” by 𝑓(𝑥) = 𝑤0 + 𝑤1𝑥
• some of the variance in 𝑦 is not explained by 𝑓(𝑥)

Figure 3: Some (but) not necessarily all of variance of 𝑦 is explained by the linear model.

Maybe 𝑦 varies with some other function of 𝑥, maybe part of the variance in 𝑦 is explained by other
features not in 𝑥, maybe it is truly “random”…

Residual term (2)

The residual term captures everything that isn’t in the model:

𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖 + 𝑒𝑖

where 𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖.
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Example: Intro ML grades

Figure 4: Predicting students’ grades in Intro ML using regression on previous coursework.

Suppose students we want to develop a model that can predict a student’s course grade.
To some extent, a student’s average grades on previous coursework “explains” their grade in Intro ML.

• The predicted value for each student, ̂𝑦, is along the diagonal line. Draw a vertical line from each
student’s point (𝑦) to the corresponding point on the line ( ̂𝑦). This is the residual 𝑒 = 𝑦 − ̂𝑦.

• Some students fall right on the line - these are examples that are explained “well” by the model.
• Some students are far from the line. The magnitude of the residual is greater for these examples.
• The difference between the “true” value 𝑦 and the predicted value ̂𝑦 may be due to all kinds of
differences between the “well-explained example” and the “not-well-explained-example” - not ev-
erything about Intro ML course grade can be explained by performance in previous coursework!
This is what the residual captures.

Interpreting the linear regression: If slope 𝑤1 is 0.8 points in Intro ML per point average in previous
coursework, we can say that

• a 1-point increase in score on previous coursework is, on average, associated with a 0.8 point in-
crease in Intro ML course grade.

What canwe say about possible explanations? We can’t saymuch using thismethod - anything is possible:
• statistical fluke (we haven’t done any test for significance)
• causal - students who did well in previous coursework are better prepared
• confounding variable - students who did well in previous courseworkmight havemore time to study
because they don’t have any other jobs or obligations, and they are likely to do well in Intro ML for
the same reason.

This method doesn’t tell us why this association is observed, only that it is. (There are other methods
in statistics for determining whether it is a statistical fluke, or for determining whether it is a causal
relationship.)
(Also note that the 0.8 point increase according to the regression model is only an estimate of the “true”
relationship.)
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Multiple linear regression
Matrix representation of data

Represent data as a matrix, with 𝑛 samples and 𝑑 features; one sample per row and one feature per
column:

𝐗 = [
𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

] , 𝐲 = [
𝑦1⋮
𝑦𝑛

]

𝑥𝑖,𝑗 is 𝑗th feature of 𝑖th sample.

Note: by convention, we use capital letter for matrix, bold lowercase letter for vector.

Linear model

For a given sample (row), assume a linear relationship between feature vector 𝐱𝐢 = [𝑥𝑖,1, ⋯ , 𝑥𝑖,𝑑] and
scalar target variable 𝑦𝑖:

̂𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖,1 + ⋯ + 𝑤𝑑𝑥𝑖,𝑑

Model has 𝑑 + 1 parameters.
• Samples are vector-label pairs: (𝐱𝐢, 𝑦𝑖), 𝑖 = 1, 2, ⋯ , 𝑛
• Each sample has a feature vector 𝐱𝐢 = [𝑥𝑖,1, ⋯ , 𝑥𝑖,𝑑] and scalar target 𝑦𝑖
• Predicted value for 𝑖th sample will be ̂𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖,1 + ⋯ + 𝑤𝑑𝑥𝑖,𝑑

It’s a little awkward to carry around that 𝑤0 separately, if we roll it in to the rest of the weights we can
use a matrix representation…

Matrix representation of linear regression (1)

Define a new design matrix and weight vector:

𝐀 = [
1 𝑥1,1 ⋯ 𝑥1,𝑑
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

] , 𝐰 = ⎡⎢
⎣

𝑤0𝑤1⋮
𝑤𝑑

⎤⎥
⎦

Matrix representation of linear regression (2)

Then, �̂� = 𝐀𝐰.

And given a new sample with feature vector 𝐱𝐢, predicted value is ̂𝑦𝑖 = ⟨[1, 𝐱𝐢], 𝐰⟩ = [1, 𝐱𝑇
𝐢 ]𝐰.

(The angle brackets denote a dot product.)
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Here is an example showing the computation:

Figure 5: Example of a multiple linear regression.

What does the residual look like in the multivariate case?

Illustration - residual with two features

Figure 6: In 2D, the least squares regression is now a plane. In higher 𝑑, it’s a hyperplane. (ISLR)

Linear basis function regression
The assumption that the output is a linear function of the input features is very restrictive. Instead, what
if we consider linear combinations of fixed non-linear functions?

Basis functions

A function

𝜙𝑗(𝐱) = 𝜙𝑗(𝑥1, ⋯ , 𝑥𝑑)

is called a basis function.
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Linear basis function model for regression

Standard linear model:

̂𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖,1 + ⋯ + 𝑤𝑑𝑥𝑖,𝑑

Linear basis function model:

̂𝑦𝑖 = 𝑤0𝜙0(𝐱𝐢) + ⋯ + 𝑤𝑝𝜙𝑝(𝐱𝐢)
Some notes:

• The 1s column we added to the design matrix is easily represented as a basis function (𝜙0(𝐱) = 1).
• There is not necessarily a one-to-one correspondence between the columns of 𝑋 and the basis
functions (𝑝 ≠ 𝑑 is OK!). You can have more/fewer basis functions than columns of 𝑋.

• Each basis function can accept as input the entire vector 𝐱𝐢.
• The model has 𝑝 + 1 parameters.

Vector form of linear basis function model

The prediction of this model expressed in vector form is:

̂𝑦𝑖 = ⟨𝝓(𝐱𝐢), 𝐰⟩ = 𝐰𝑇 𝝓(𝐱𝐢)
where

𝝓(𝐱𝐢) = [𝜙0(𝐱𝐢), ⋯ , 𝜙𝑝(𝐱𝐢)], 𝐰 = [𝑤0, ⋯ , 𝑤𝑝]

(The angle brackets denote a dot product.)
Important note: although the model can be non-linear in 𝐱, it is still linear in the parameters 𝐰 (note
that 𝐰 appears outside 𝝓(⋅)!) That’s what makes it a linear model.
Some basis functions have their own parameters that appear inside the basis function, i.e. we might have
a model

̂𝑦𝑖 = 𝐰𝑇 𝝓(𝐱𝐢, 𝜽)
where 𝜽 are the parameters of the basis function. The model is non-linear in those parameters, and they
need to be fixed before training.

Matrix form of linear basis function model

Given data (𝐱𝐢, 𝑦𝑖), 𝑖 = 1, ⋯ , 𝑛:

Φ = [
𝜙0(𝐱𝟏) 𝜙1(𝐱𝟏) ⋯ 𝜙𝑝(𝐱𝟏)

⋮ ⋮ ⋱ ⋮
𝜙0(𝐱𝐧) 𝜙1(𝐱𝐧) ⋯ 𝜙𝑝(𝐱𝐧)

]

and �̂� = Φ𝐰.
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“Recipe” for linear regression (???)

1. Get data: (𝐱𝐢, 𝑦𝑖), 𝑖 = 1, 2, ⋯ , 𝑛
2. Choose a model: ̂𝑦𝑖 = ⟨𝝓(𝐱𝐢), 𝐰⟩
3. Choose a loss function: ???
4. Find model parameters that minimize loss: ???
5. Use model to predict ̂𝑦 for new, unlabeled samples
6. Evaluate model performance on new, unseen data

Now that we have described some more flexible versions of the linear regression model, we will turn to
the problem of finding the weight parameters, starting with the simple linear regression. (The simple
linear regression solution will highlight some interesting statistical relationships.)

Ordinary least squares solution for simple linear regression
Mean squared error loss function

We will use the mean squared error (MSE) loss function:

𝐿(𝐰) = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

which is related to the residual sum of squares (RSS):

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 =
𝑛

∑
𝑖=1

(𝑒𝑖)2

“Least squares” solution: find values of 𝐰 to minimize MSE.

“Recipe” for linear regression

1. Get data: (𝐱𝐢, 𝑦𝑖), 𝑖 = 1, 2, ⋯ , 𝑛
2. Choose a model: ̂𝑦𝑖 = ⟨𝝓(𝐱𝐢), 𝐰⟩
3. Choose a loss function: 𝐿(𝐰) = 1

𝑛 ∑𝑛
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

4. Find model parameters that minimize loss: 𝐰∗
5. Use model to predict ̂𝑦 for new, unlabeled samples
6. Evaluate model performance on new, unseen data

How to find 𝐰∗?
The loss function is convex, so to find 𝐰∗ where 𝐿(𝐰) is minimized, we:

• take the partial derivative of 𝐿(𝐰) with respect to each entry of 𝐰
• set each partial derivative to zero
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Optimizing 𝐰 - simple linear regression (1)

Given

𝐿(𝑤0, 𝑤1) = 1
𝑛

𝑛
∑
𝑖=1

[𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)]2

we take

𝜕𝐿
𝜕𝑤0

= 0, 𝜕𝐿
𝜕𝑤1

= 0

Optimizing 𝐰 - simple linear regression (2)

First, the intercept:

𝐿(𝑤0, 𝑤1) = 1
𝑛

𝑛
∑
𝑖=1

[𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)]2

𝜕𝐿
𝜕𝑤0

= − 2
𝑛

𝑛
∑
𝑖=1

[𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)]

using chain rule, power rule.
(We can then drop the −2 constant factor when we set this expression equal to 0.)

Optimizing 𝐰 - simple linear regression (3)

Set this equal to 0, “distribute” the sum, and we can see

1
𝑛

𝑛
∑
𝑖=1

[𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)] = 0

⟹ 𝑤∗
0 = ̄𝑦 − 𝑤∗

1 ̄𝑥
where ̄𝑥, ̄𝑦 are the means of 𝑥, 𝑦.

Optimizing 𝐰 - simple linear regression (4)

Now, the slope coefficient:

𝐿(𝑤0, 𝑤1) = 1
𝑛

𝑛
∑
𝑖=1

[𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)]2

𝜕𝐿
𝜕𝑤1

= 1
𝑛

𝑛
∑
𝑖=1

2(𝑦𝑖 − 𝑤0 − 𝑤1𝑥𝑖)(−𝑥𝑖)
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Optimizing 𝐰 - simple linear regression (5)

⟹ − 2
𝑛

𝑛
∑
𝑖=1

𝑥𝑖(𝑦𝑖 − 𝑤0 − 𝑤1𝑥𝑖) = 0

Solve for 𝑤∗
1:

𝑤∗
1 = ∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2

Note: some algebra is omitted here, but refer to the secondary notes for details.

Optimizing 𝐰 - relationship to variance/covariance

The slope coefficient is the ratio of covariance 𝜎𝑥𝑦 to variance 𝜎2
𝑥:

𝜎𝑥𝑦
𝜎2𝑥

where 𝜎𝑥𝑦 = 1
𝑛 ∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦) and 𝜎2
𝑥 = 1

𝑛 ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

Optimizing 𝐰 - relationship to correlation coefficient

We can also express it as

𝑟𝑥𝑦𝜎𝑦
𝜎𝑥

where correlation coefficient 𝑟𝑥𝑦 = 𝜎𝑥𝑦
𝜎𝑥𝜎𝑦

.

(Note: from Cauchy-Schwartz law, |𝜎𝑥𝑦| < 𝜎𝑥𝜎𝑦, we know 𝑟𝑥𝑦 ∈ [−1, 1])

MSE for optimal simple linear regression

𝐿(𝑤∗
0, 𝑤∗

1) = 𝜎2
𝑦 − 𝜎2

𝑥𝑦
𝜎2𝑥

⟹ 𝐿(𝑤∗
0, 𝑤∗

1)
𝜎2𝑦

= 1 − 𝜎2
𝑥𝑦

𝜎2𝑥𝜎2𝑦

If we fit a simple regression model using this ordinary least squares solution,

• the ratio 𝐿(𝑤∗
0,𝑤∗

1)
𝜎2𝑦

is the fraction of unexplained variance: of all the variance in 𝑦 (denominator),
how much is still “left” unexplained after our model explains some of it (numerator)? (best case: 0)

• The coefficient of determination, R2, is equal to the ratio 𝜎2
𝑥𝑦

𝜎2𝑥𝜎2𝑦
(best case: 1) for the OLS simple

regression. Generally, 𝑅2 = 1 − 𝑀𝑆𝐸
𝜎2𝑦

.
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Ordinary least squares solution for multiple/linear basis function regression
Setup: L2 norm

Definition: L2 norm of a vector 𝐱 = (𝑥1, ⋯ , 𝑥𝑛):

||𝐱|| = √𝑥2
1 + ⋯ + 𝑥2𝑛

We will want to minimize the L2 norm of the residual.

Setup: Gradient vector

To minimize a multivariate function 𝑓(𝐱) = 𝑓(𝑥1, ⋯ , 𝑥𝑛), we find places where the gradient is zero,
i.e. each entry must be zero:

∇𝑓(𝐱) = ⎡
⎢
⎣

𝜕𝑓(𝐱)
𝜕𝑥1⋮

𝜕𝑓(𝐱)
𝜕𝑥𝑛

⎤
⎥
⎦

The gradient is the vector of partial derivatives.

MSE for multiple/LBF regresion

Given a vector 𝐲 and matrix Φ (with 𝑑 columns, 𝑛 rows),

𝐿(𝐰) = 1
2‖𝐲 − Φ𝐰‖2

where the norm above is the L2 norm.
(we defined it with a 1

2 constant factor for convenience.)

Gradient of MSE

𝐿(𝐰) = 1
2‖𝐲 − Φ𝐰‖2

gives us the gradient

∇𝐿(𝐰) = −Φ𝑇 (𝐲 − Φ𝐰)

Solving for 𝐰
∇𝐿(𝐰) = 0,

−Φ𝑇 (𝐲 − Φ𝐰) = 0,
Φ𝑇 Φ𝐰 = Φ𝑇 𝐲, or

𝐰 = (Φ𝑇 Φ)−1Φ𝑇 𝐲.
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Solving a set of linear equations

If Φ𝑇 Φ is full rank (usually: if 𝑛 ≥ 𝑑), then a unique solution is given by

𝐰∗ = (Φ𝑇 Φ)−1 Φ𝑇 𝐲
This expression:

Φ𝑇 Φ𝐰 = Φ𝑇 𝐲
represents a set of 𝑑 equations in 𝑑 unknowns, called the normal equations.
We can solve this as we would any set of linear equations (see supplementary notebook on computing
regression coefficients by hand.)

Interpreting regression metrics
Understanding the numbers

• Correlation coefficient 𝑟𝑥𝑦
• Slope coefficient 𝑤𝑗 for feature 𝑗
• MSE, R2

Which of these depend only on the data, and which depend on the model too?
Which of these tell us something about the “goodness” of our model?

Interpreting correlation coefficient

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

Figure 7: Several sets of (x, y) points, with 𝑟𝑥𝑦 for each. Image via Wikipedia.

The correlation coefficient 𝜎𝑥𝑦
𝜎𝑥𝜎𝑦

is fundamental to the data - it is not about a fitted model.
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Interpreting coefficient 𝑤𝑗

The coefficient 𝑤𝑗 for feature 𝑗 says:

• simple regression: “an increase of one unit in this feature is associated with an increase of the
target variable by 𝑤𝑗”

• multiple regression: “an increase of one unit in this feature, while holding the other features that
are in the model constant, is associated with an increase of the target variable by 𝑤𝑗”

Note: doesn’t say whether the effect is causal or whether it is significant (out of scope of this course).
Be aware of units - we cannot directly compare the magnitude of coefficients of features measured in
different units.

Interpreting R2 as explained variance

𝑅2 = 1 − 𝑀𝑆𝐸
𝜎2𝑦

= 1 − ∑𝑛
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

For linear regression: What proportion of the variance in 𝑦 is “explained” by our model?

• 𝑅2 ≈ 1 - model “explains” all the variance in 𝑦
• 𝑅2 ≈ 0 - model doesn’t “explain” any of the variance in 𝑦

Interpreting R2 as error relative to “mean model”

Alternatively: what is the ratio of error of our model, to error of prediction by mean?

𝑅2 = 1 − 𝑀𝑆𝐸
𝜎2𝑦

= 1 − ∑𝑛
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

What would be R2 of a model that is worse than prediction by mean?

Example: Intro ML grades (2)

Figure 8: Predicting students’ grades in Intro ML, for two different sections.

In Instructor A’s section, a change in average overall course grades is associated with a bigger change in
Intro ML course grade than in Instructor B’s section; but in Instructor B’s section, more of the variance
among students is explained by the linear regression on previous overall grades.
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Recap
Completed “recipe”

1. Get data: (𝐱𝐢, 𝑦𝑖), 𝑖 = 1, 2, ⋯ , 𝑛
2. Choose a model: ̂𝑦𝑖 = ⟨𝝓(𝐱𝐢), 𝐰⟩
3. Choose a loss function: 𝐿(𝐰) = 1

𝑛 ∑𝑛
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

4. Find model parameters that minimize loss: OLS solution for 𝐰∗
5. Use model to predict ̂𝑦 for new, unlabeled samples
6. Evaluate model performance on new, unseen data

Key questions

• What type of relationships 𝑓(𝑥) can it represent?
• What insight can we get from the trained model?
• (How do we train the model efficiently?)
• (How do we control the generalization error?)

We will address the last two questions next week.
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