Gradient descent

Fraida Fund

Contents
Inthislecture e e e e e e e e e e e e 2
Runtime of OLS solution e e e e e e e e e e e e e e 2
Limitationsof OLS solution e e e 2
Background: BigO notation e e e 2
Computing OLS solution e e e e e 2
Solution using gradientdescent e e e 3
Iterative solution L e e e e e e e e e e e 3
Background: Gradients and optimization., 3
Gradientdescentidea e e e e e 3
Standard (“batch”) gradientdescent 4
Example: gradient descent for linear regression (1) 4
Example: gradient descent for linearregression (2) 4
Variationsonmainidea i e e e e e e e e e e e e e 5
Stochastic gradientdescent e e e e 5
Mini-batch (also “stochastic”) gradientdescent (1) 6
Mini-batch (also “stochastic”) gradientdescent (2) 6
Selectingthe learningrate e e e e e e e 6
Annealing the learningrate 7
Gradientdescentinaravine (1) v i i i e e e 7
Gradientdescentinaravine (2) e 7
Momentum (1) o e e e e e e 8
Momentum (2) e e e e e 8
Momentum: pseudocode L. e e e e e e e e e e e e e 8
Momentum: illustrated e e e e 8
AdaGrad (1) e e 9
AdaGrad (2) e 9
AdaGrad: pseudocode L L e e e e e e e e e 9
RMSProp: Leaky AdaGrad e e e e e e e e e e e e e 9
RMSProp: pseudocode e e e e e e e e e e e e e e e 10
Adam: Adaptive Moment Estimation L 10
Adam: pseudocode vs Momentum L L L Lo e e e e e e e e 10
Adam: pseudocode VS RMSProp o it e e e e e e e e e e e 1"
Adam: Pseudocode with bias correction o o 11
Illustration (Beale’s function) e 12
Illustration (Long valley) i i e e e 12
3= o ¥ o 12

Math prerequisites for this lecture: You should know about:

« derivatives and optimization (Appendix C in Boyd and Vandenberghe)
+ complexity of algorithms and especially of vector and matrix operations (Appendix B in Boyd and
Vandenberghe, also the complexity part of Section I, Chapter 1 and Section II, Chapter 5)

In this lecture

Addresses “How do we train the model efficiently?”

+ Runtime of OLS solution for multiple/LBF regression
« Solution using gradient descent
- Variations on main idea

Runtime of OLS solution
Limitations of OLS solution

« Specific to linear regression, L2 loss

« For extremely large datasets: runtime, memory
Background: Big O notation

Approximate the number of operations required, as a function of input size.

+ Ignore constant terms, constant factors
* Ignore all but the dominant term

Example: 3n3 4+ 100n? + 1000 would be O(n?).

Computing OLS solution

How long does it take to compute

-1

w* = (073) oTy

where ® isann x d matrix?
Runtime of a “naive” solution using “standard” matrix multiplication:
- O(d?n) to multiply 7 ®
- O(dn) to multiply @'y
- O(d?) to compute the inverse of ®7'® (Note: in practice, we can do it a bit faster.)

Since n is generally much larger than d, the first term dominates and the runtime is O(d?n).

xX5) + @Xe6) + GXF + UX¥)

NN

2 3 J

d 1 2 49 5

n
49 1
2 3 1 5
5 5
«—
P — d
—
" d

Figure 1: Computing ®7 ®. For each entry in the matrix, we need n multiplications, and then we need to
fillin d X d entries to complete the matrix.

Solution using gradient descent
Iterative solution
Suppose we would start with all-zero or random weights. Then iteratively (for ¢ rounds):

« pick random weights
- if loss performance is better, keep those weights
- if loss performance is worse, discard them

For infinite ¢, we'd eventually find optimal weights - but clearly we could do better.

Background: Gradients and optimization

Gradient has two important properties for optimization:

At a minima (or maxima, or saddle point),

VL(w) =0

At other points, V L(w) points towards direction of maximum (infinitesimal) rate of increase.

Exawmple:) increases) increases Gradient is large when
M) = w2 toward +ve w toward -ve w f) is steep, zero
At/ dw = 2w 3Foxcl?en‘t s +ve 3r0\dien't S -ve when it s minimum
)))
—
- 0 + - 0 + - 0 +
w w

Figure 2: Properties of gradient.

Gradient descent idea
To move towards minimum of a (smooth, convex) function:
Start from some initial point, then iteratively

« compute gradient at current point, and
+ add some fraction of the negative gradient to the current point

Standard (“batch”) gradient descent

For each step ¢ along the error curve:
witl = wt — aVL(wh)

n
(8%
= Wt - ﬁ E VLi<Wt7Xi>yi>
=1

Repeat until stopping criterion is met.

“Stopping criteria” may be: loss is sufficiently small, gradient is sufficiently close to zero, or a pre-set max
number of iterations is reached.

Note: the superscript ¢ tracks what iteration we are on. It's not an exponent!

Example: gradient descent for linear regression (1)

With a mean squared error loss function

Liw) = 23, — ()
= Ly — Xuf?

Gradient of the loss function is:
- Vector form: —’gt z:b:l(yi — (W', z;))x;
. _ At
+ Matrix form: == X7 (y — Xw")

we move in the opposite direction, so...

Example: gradient descent for linear regression (2)

We will compute the weights at each step as

t n
t41 ot X ot e AN
wt =t 3 ()
t
:wt—i—a—XT(y—th)
n

(dropping the constant 2 factor)

To update w, must compute 7 loss functions and gradients - each iteration is O(nd). We need multiple
iterations, but in many cases it's more efficient than the previous approach.

However, if n is large, it may still be expensive!

Variations on main idea

Two main “knobs” to turn:

« “batch” size
« learning rate

Stochastic gradient descent

Idea:

At each step, compute estimate of gradient using only one randomly selected sample, and move in the
direction it indicates.

) w0

Figure 3: Full-batch gradient descent (left), SGD (right). Many of the steps will be in the wrong direction,
but progress towards minimum occurs on average, as long as the steps are small.

Each iteration is now only O(d), but we may need more iterations than for gradient descent. However,
in many cases we still come out ahead (especially if n is large!).

See supplementary notes for an analysis of the number of iterations needed.
Also:

« SGD is often more efficient because of redundancy in the data - data points have some similarity.

« But, we miss out on the benefits of vectorization. In practice, it takes longer to compute something
over 1sample 1024 times, than over 1024 samples 1 time.

« If the function we want to optimize does not have a global minimum, the noise can be helpful - we
can “bounce” out of a local minimum.

https://chinmayhegde.github.io/introml-notes-sp2020/pages/lecture3_notes.html

Mini-batch (also “stochastic”) gradient descent (1)
Idea:

At each step, select a small subset of training data (“mini-batch”), and evaluate gradient on that mini-
batch.

Then move in the direction it indicates.

Mini-batch (also “stochastic”) gradient descent (2)

For each step ¢ along the error curve:

- Select random mini-batch I, C 1, ..., n
« Compute gradient approximation:

1
gt = m ZVL(Xi,ymwt)

thier,
- Update parameters: w't! = w! — alg?

Now that each iteration is not equal to an iteration over all data, we need to introduce the idea of an
“epoch™

« One epoch = one pass over all the data
* Mini-batch SGD is often used in practice because we get some benefit of vectorization, but also take
advantage of redundancy in data.

After a fixed number of epochs (passes over the entire data), * we may end up at a better minimum (lower
loss) with a small batch size, * but, the time per epoch may be longer with a small batch size.

Selecting the learning rate

Cost
A

a) too small a) too big

Figure 4: Choice of learning rate «v is critical

Image credit: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, by Au-
rélien Géron.

Also note: SGD “noise ball”

Annealing the learning rate

One approach: decay learning rate slowly over time, such as

- Exponential decay: a; = age*!
- 1/tdecay: o, = oy/(1 + kt)
(where k is tuning parameter).

But: this is still sensitive, requires careful selection of gradient descent parameters for the specific learn-
ing problem.

Can we do this in a way that is somehow “tuned” to the shape of the loss function?

Gradient descent in a ravine (1)

w2/
// .
/ A

) / T~ Path taken by
/ | Gradient Descent
/ /
/ Ideal Path
/,4 14

wl

Figure 5: Gradient descent path bounces along ridges of ravine, because surface curves much more steeply
in direction of w;.

Gradient descent in a ravine (2)

w2/
// .
/ _ 7
/ < Path taken by
/ /7 Gradient Descent
/ /
/ Ideal Path
/ 14

wl

Figure 6: Gradient descent path bounces along ridges of ravine, because surface curves much more steeply
in direction of w;.

Momentum (1)

« Idea: Update includes a velocity vector v, that accumulates gradient of past steps.
« Each update is a linear combination of the gradient and the previous updates.
- (Go faster if gradient keeps pointing in the same direction!)

Momentum (2)

Classical momentum: for some 0 < v, < 1,

,Ut+1 — ’)/t’Ut + VL (wt)

SO

wtl = wt — ottt — wt — ot tht + VI (wt>)

(v may be in range 0.9 - 0.99.)

Momentum: pseudocode
GD:

for t in range(num_steps):
dw = compute_grad(w)
w -= 1r * dw

GD + Momentum:

for t in range(num_steps):
dw = compute_grad(w)
v = gamma * v + dw
w-=1r * v

Momentum: illustrated

w2 /
/
/
/ =/
/ J—
/ i~ Path taken by
/ [Gradient Descent
/ /
/ ~—— Ideal Path

wl

Figure 7: Momentum dampens oscillations by reinforcing the component along w4 while canceling out
the components along w;.

AdaGrad (1)

Next idea: “per-parameter learning rates”!

Track per-parameter square of gradient, to normalize parameter update step.

AdaGrad (2)
«
lUt+1 — 1Ut _ ___________§71; IUt
Vouttl + ¢ (w')
where

vt =t + VL (wt)2

Weights with large gradient have smaller learning rate, weights with small gradients have larger learning
rates.

i.e.: take smaller steps in steep directions, take bigger steps where the gradient is flat.

AdaGrad: pseudocode
GD:

for t in range(num_steps):
dw = compute_grad(w)
w -= 1r * dw

GD + AdaGrad:

grad_sq = 0
for t in range(num_steps):
dw = compute_grad(w)
grad_sq = grad_sq + dw * dw
w —= 1r * dw / sqrt(grad_sq + epsilon)

RMSProp: Leaky AdaGrad

Idea: Use EWMA to emphasize recent gradient magnitudes.

Q
——VL
Vortl + e

where

RMSProp: pseudocode
GD + AdaGrad:

grad_sq = 0
for t in range(num_steps):
dw = compute_grad(w)
grad_sq = grad_sq + dw * dw
w -= 1r * dw / sqrt(grad_sq + epsilon)

GD + RMSProp:

grad_sq = 0

for t in range(num_steps):
dw = compute_grad(w)
grad_sq = gamma * grad_sq + (1 - gamma) * dw * dw
w —= 1lr * dw / sqrt(grad_sq + epsilon)

Adam: Adaptive Moment Estimation

+ Uses ideas from momentum (first moment) and RMSProp (second moment)!
« plus bias correction

Adam: pseudocode vs Momentum

GD + Momentum:

for t in range(num_steps):
dw = compute_grad(w)
v = gamma * v + dw
w-=1r * v

GD + Adam (without bias correction):

momentl = 0

moment2 = 0

for t in range(num_steps):
dw = compute_grad(w)
momentl = bl * momentl + (1 - bl) * dw
moment2 = b2 * moment2 + (1 - b2) * dw * dw
w —= 1lr * momentl / sqrt(moment2 + epsilon)

10

Adam: pseudocode vs RMSProp
GD + RMSProp:

grad_sq = 0

for t in range(num_steps):
dw = compute_grad(w)
grad_sq = gamma * grad_sq + (1 - gamma) * dw * dw
w -= 1r * dw / sqrt(grad_sq + epsilon)

GD + Adam (without bias correction):

momentl = 0O

moment2 = 0

for t in range(num_steps):
dw = compute_grad(w)
momentl = bl * momentl + (1 - bl) * dw
moment2 = b2 * moment2 + (1 - b2) * dw * dw
w -= 1lr * momentl / sqrt(moment2 + epsilon)

Usually b1 is smaller than b2, i.e. we update moment1 more aggressively than moment?2.

Adam: Pseudocode with bias correction

momentl = 0
moment2 = 0
for t in range(num_steps):
dw = compute_grad(w)
momentl = bl * momentl + (1 - bl) * dw
moment2 = b2 * moment2 + (1 - b2) * dw * dw
moment2_unbias = moment2 / (1 - b2 t)
moment2 unbias = moment2 / (1 - b2 t)
w —= 1lr * momentl unbias / sqrt(moment2_unbias + epsilon)

When we initialize both moments to zero, they are initially “biased” to smaller values (since they update
slowly!) This bias correction accounts for that.

T

Illustration (Beale's function)

k:i: e SGD

- Momentum
NAG
Adagrad
Adadelta
Rmsprop

Figure 8: Animation credit: Alec Radford. Link for animation.

Due to the large initial gradient, velocity based techniques shoot off and bounce around, while those that
scale gradients/step sizes like RMSProp proceed more like accelerated SGD.

Illustration (Long valley)

SGD
== Momentum
4

Vit - NAG

W e

s

B g s My

2 1 Adadelta
7
iy

,"f,:’:'.;,{a,,l:

. Rmsprop
o

. s
_ / s
2 e o I 0y

S

7
%
e

it
9,
SRS
SO,
""':’:"i"o' i"

— R
2 LIS

Figure 9: Animation credit: Alec Radford. Link for animation.

SGD stalls and momentum has oscillations until it builds up velocity in optimization direction. Algorithms
that scale step size quickly break symmetry and descend in optimization direction.

Recap

- Gradient descent as a general approach to training
* Variations

Gradient descent is easy on linear regression! You won't get to apply any of these more advanced tech-
niques until later in the semester, when we work with less friendly loss surfaces.

12

https://imgur.com/a/Hqolp
https://imgur.com/a/Hqolp

	In this lecture
	Runtime of OLS solution
	Limitations of OLS solution
	Background: Big O notation
	Computing OLS solution

	Solution using gradient descent
	Iterative solution
	Background: Gradients and optimization
	Gradient descent idea
	Standard (“batch”) gradient descent
	Example: gradient descent for linear regression (1)
	Example: gradient descent for linear regression (2)

	Variations on main idea
	Stochastic gradient descent
	Mini-batch (also “stochastic”) gradient descent (1)
	Mini-batch (also “stochastic”) gradient descent (2)
	Selecting the learning rate
	Annealing the learning rate
	Gradient descent in a ravine (1)
	Gradient descent in a ravine (2)
	Momentum (1)
	Momentum (2)
	Momentum: pseudocode
	Momentum: illustrated
	AdaGrad (1)
	AdaGrad (2)
	AdaGrad: pseudocode
	RMSProp: Leaky AdaGrad
	RMSProp: pseudocode
	Adam: Adaptive Moment Estimation
	Adam: pseudocode vs Momentum
	Adam: pseudocode vs RMSProp
	Adam: Pseudocode with bias correction
	Illustration (Beale’s function)
	Illustration (Long valley)

	Recap

