Logistic Regression for Classification
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In this lecture

« Linear classifiers

« Logistic regression

- Fitting logistic regression
+ Naive Bayes classifier

Classification

Suppose we have a series of data points { (x1, Y1), (X2, ¥ ), - » (Xp,, ¥,,) } and there is some (unknown)
relationship between x; and y,.

« Classification: The output variable y is constrained tobe € 0,1, .-+, K — 1

- Binary classification: The output variable ¥ is constrained to be € 0, 1

Linear classifiers
Binary classification with linear decision boundary

« Plot training data points

- Draw a line (decision boundary) separating 0 class and 1 class

- If a new data point is in the decision region corresponding to class 0, then ¢y = 0.
- If it is in the decision region corresponding to class 1, then y = 1.
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Figure 1: Binary classification problem with linear decision boundary.

Linear classification rule
- Given a weight vector: w = [w, -+, w,]

. N d
+ Compute linear combination z = wg + ijl Wy g

 Predict class:
_J1,z>0
- 10,2<0

N



Multi-class classification: illustration

X2

X1
Figure 2: Each hyperplane H; separates the examples of C; from the examples of all other classes.

Linear separability

Given training data

(Xi7yi>7i - ]-,"'7N

The problem is perfectly linearly separable if there exists a separating hyperplane /1, such that all x €
C, lie on its positive side, and all x € C'j,j = i lie on its negative side.

Non-uniqueness of separating hyperplane

When a separating hyperplane exists, it is not unique (there are in fact infinitely many such hyperplanes.)
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Figure 3: Several separating hyperplanes.



Non-existence of perfectly separating hyperplane

Many datasets not linearly separable - some points will be misclassified by any possible hyperplane.
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Figure 4: This data is not separable.

Choosing a hyperplane

Which hyperplane to choose?
We will try to find the hyperplane that minimizes loss according to some loss function.

Will revisit several times this semester.

Logistic regression
Probabilistic model for binary classification

Instead of looking for a model f so that

we will look for an f so that

P(y; = 1|x;) = f(z;), P(y; = 0lx;) = 1 — f(x;)

We need a function that takes a real value and maps it to range [0, 1]. What function should we use?

l—ﬁ
0.5

Logistic/sigmoid function

1

Figure 5: O'(Z) = Trez

is a classic “S"-shaped function.

Note the intuitive relationship behind this function’s output and the distance from the linear separator
(the argument that is input to the function).
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Figure 6: Output is close to 0 or 1ifthe argument to the ¢ has large magnitude (point is far from separating
hyperplane, but closer to 0.5 if the argument is small (point is near separating hyperplane).

Logistic function for binary classification

Let z = w, + Z;.lzl W4T 4, then
Ply=1Jx) =

(note: P(y=1)+ P(y=0)=1)

Logistic function with threshold

Choose a threshold ¢, then

<)

_J1, Ply=1x)>t
10, Ply=1]x) <t



Logistic model as a “soft” classifier

Basic Sigmoid Function

Figure 7: Plot of P(y = 1|z) =

—1+1_Z , 2 = wyx. As w; — o0 the logistic model becomes a “hard”
e
rule.

Logistic classifier properties

« Class probabilities depend on distance from separating hyperplane
+ Points far from separating hyperplane have probability &~ 0 or &~ 1
- When ||w]|| is larger, class probabilities go towards extremes (0,1) more quickly

Logistic regression - illustration
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Figure 8: Logistic regression, illustrated with contour plot.



Multi-class logistic regression
Supposey € 0, ..., K — 1. We use:

- W € RE*4 (parameter matrix)
- z = WxT (K linear functions)

(Assume we have stacked a 1s column so that the intercept is rolled into the parameter matrix.)

Softmax function

e*k

9(z) = K1
Dpmp €
- Takes as input a vector of & numbers
- Outputs K probabilities proportional to the exponentials of the input numbers.

Softmax function as a PMF
Acts like a probability mass function:

- g,(z) € [0, 1] for each k

Yy gx(2) =1

« larger input corresponds to larger “probability”
Softmax function for multi-class logistic regression (1)

Class probabilities are given by

ek
Ply=klx) = —5—
D €7
Softmax function for multi-class logistic regression (2)
When z;, > z, forall £ # k:

* gi(2z) ~ 1
- g,(z) = Oforall £ # k

Assign highest probability to class k when z, is largest.



Fitting logistic regression model

We know that to fit weights, we need

+ a loss function,
« and a training algorithm to find the weights that minimize the loss function.
Learning model parameters

Weights W are the unknown model parameters:

z=Wx, W e REKxd

P(y = k|x) = gx(2z) = g,(Wx)

Given training data (x;,v,),%? = 1, ..., n, we must learn W.

The weight matrix W has a column for each parameter, and a row for each class. (In the binary classifi-
cation case, there is just one row, i.e. we have a weight vector.)

Note that if the data is linearly separable, there will be more than one W that perfectly classifies the
training data! We will choose the maximum likelihood one.

Maximum likelihood estimation (1)

Let P(y|X, W) be the probability of observing class labels y = [y, --- , U,

given inputs X = [X, ..., X,,] and weights W.

The maximum likelihood estimate is

~

W = argmax P(y|X, W)
w
It is the estimate of parameters for which these observations are most likely.

Maximum likelihood estimation (2)

Assume outputs ¥y, are independent of one another,
n
P(Y‘Xvw) = HP(yi|Xi7W)
i=1

Note: for binary classification, P(y,|x;, w) is equal to

Py, = 1[x;, w) wheny, = 1
- and (1 — y;) P(y; = 0]x;, w) when y, = 0.

and since only one term will be non-zero for any given y,, P(y,|x;, W) is equal to the sum of those:

yiP(?Ji = 1‘X17W> +(1— ?Jz')P@i = O’Xivw)

This expression is familiar as the PMF of a Bernoulli random variable.



We take the log of both sides, because then the product turns into a sum, and we make it negative so we
can minimize instead of maximize...
Maximum likelihood estimation (3)
Define the negative log likelihood:
L(W) =—InP(y|X, W)
n

(n P(yz‘|Xi,W>

=1

Note that maximizing the likelihood is the same as minimizing the negative log likelihood.

Maximum likelihood estimation (4)

Now we can re-write max likelihood estimator as a loss function to minimize:

~

W = argmax P(y|X, W) = argmin L(W)
w W

We will “plug in” the model to specifically define the loss function, first for the binary classification case
(binary cross-entropy loss) and then for the multi-class case (categorical cross-entropy loss).

Binary cross-entropy loss function

LOW) = =3 (51 Py, = 1 w) + (1 - )10 Ply, = O w))

Categorical cross-entropy loss function (1)

Define “one-hot” vector - for a sample from class k, all entries in the vector are 0 except for the entry
with index k, which is 1:

k10 Y # k
i=1,..,n, k=0,..,K—1

This is used for multi-class classification.

For example: if the class labels are [0, 1, 2, 3, 4], for a sample for which y; = 3, 7;;, = [0, 0,0, 1, 0].

Categorical cross-entropy loss function (2)

Then,

K—-1
L(W) ==Y ryln Py, = klx;, W)
k=0

10



Minimizing cross-entropy loss

To minimize, we would take the partial derivative:

OL(W)

—0
oW,

for all W,

But, there is no closed-form expression - can only estimate weights via numerical optimization (e.g. gra-
dient descent).

We will show this for the binary classifier case only. The next step will be to plug in our sigmoid function,
P(y; = 1|x;, w) = o(2;).
Minimizing logistic cross-entropy (1)

For binary classification with class labels 0, 1:

In P(y;[%;, w) = y; In P(y; = 1|x;, w) + (1 —y;) ln P(y; = 0[x;, w)
=y;Ino(z) + (1 —y;) In(1—o0(z))
= y;(Ino(z;) —lno(—z)) +nho(—z)

=y, In olz) +lno(—z;)
o(—2;) (1)
1+ e

=, n m +In 0<_ZZ)

e“i(e % + 1)
R +lno(—z;)

=y,z; — In(1+ %)

=y;ln

Notes: o(—z2) =1 —o(z)

Minimizing logistic cross-entropy (2)

Binary cross-entropy loss function for [0, 1] class labels:

_Z In P (y;|x;, w) = Z In(1 4 ) — y;z;
i=1 =1

Note: The categorical cross-entropy loss function for softmax regression will have a similar form:

o 5) e

T



For the binary cross entropy loss, we will get the gradient descent update rule by applying the chain rule
to the loss function -

n

L(w) = _Z In P(y,]x;, w) = Z In(1+e) —y;2;
=1

i=1
Since we have expressed the loss in terms of z, not w, it is convenient to use the chain rule to do -

OL(w) OL(w) 0z
ow;, 0Oz ow;

J

and noting that a‘zj =, (where j is a column index, not a sample index), now we have
J

OL(w) 8L(w)x
ow, 0z 7

J

Then, we can work on 8%(:’) -

OL(w) 0 .
J— 1 .
14 e Yi

Minimizing logistic cross-entropy (3)

Gradient descent update rule will be

Z 1
witl :wt—az (m—yi> z;

1=1

This is very similar to the equivalent expression we derived for a linear regression -

n
wtt = w' + az (y; — (W', z;)) z;
=1

and has a similar intuition. If your model output is much larger (e.g. more positive) than ¥, you shift your
prediction in the negative direction. If your model output is smaller than ¥, you shift your prediction in
the positive direction.

12



Beyond the “recipe”

As with all our models, we want to know -

+ What type of relationships can we represent?

+ How “expensive” is the model (in terms of computation)?
« What insight can we get from the trained model?

« How do we control the generalization error?

Relationships

« Logistic regression learns linear boundary
» What if the “natural” decision boundary is non-linear?

Can use basis functions to map problem to transformed feature space (if “natural” decision boundary is
non-linear)

Runtime

The logistic regression is similar to the linear regression -

- prediction: the dominant term is the computation of z;, which is O(d)
- training: for one iteration of gradient descent, we have O(d) computations for each sample, so a
full batch gradient descent iteration is O(nd)

Insight from trained model

« Unlike linear regression, weights do not correspond to change in output associated with one-unit
change in input. (The coefficient tells us about the change in log odds, not the change in output.)
« Sign of weight does tell us about relationship between a given feature and target variable.

Controlling generalization error

« Bias occurs when there is undermodeling
« Variance increases with d, stochastic noise, and decreases with n
« Can add a regularization penalty to loss function

13



“Recipe” for logistic regression (binary classifier)
+ Choose a model: ;
Ply=1x,w)=0 (wo + de:r:d>
j=1
~ 1, Ply=1|x)>t
Y70, Ply=1Jx) <t

- Get data - for supervised learning, we need labeled examples: (x,,v,),7 = 1,2,---,n
« Choose a loss function that will measure how well model fits data: binary cross-entropy

Z In(1 +e*) —y;z;

=1

« Find model parameters that minimize loss: use gradient descent to find weight vector w
« Use model to predict 7 for new, unlabeled samples.

“Recipe” for logistic regression (multi-class classifier)

« Choose a model: find probability of belonging to each class, then choose the class for which the
probability is highest.

2k
P(y = k|x, W) = ———— wherez = Wx™T
e*e
£=0
- Get data - for supervised learning, we need labeled examples: (x,,v,),7 = 1,2,---,n

+ Choose a loss function that will measure how well model fits data: categorical cross-entropy

> [tn (z) —Z] ahere

=1 k k

k0 Y, + k
« Find model parameters that minimize loss: use gradient descent to find weight matrix W
« Use model to predict i for new, unlabeled samples.

14



Naive Bayes classifier

A quick look at a different type of model!

Probabilistic models (1)
For logistic regression, minimizing the cross-entropy loss finds the parameters for which
P(y|X, W)

is maximized.

Probabilistic models (2)

For linear regression, assuming normally distributed stochastic error, minimizing the squared error loss
finds the parameters for which

P(y|X,w)
is maximized.

Surprise! We've been doing maximum likelihood estimation all along.

Probabilistic models (3)

ML models that try to

- get a good fit for P(y|X): discriminative models.
- fit P(X,y) or P(X|y)P(y): generative models.

Linear regression and logistic regression are both considered discriminative models; they say “given that
we have this data, what's the most likely label?” (e.g. learning a mapping from an input to a target vari-
able).

Generative models try to learn “what does data for each class look like” and then apply Bayes rule.

Bayes rule

For a sample X, y;, is label of class k:

P(x;|y,) P(yy,)
P(x;)

- P(y,|x;): posterior probability. “What is the probability that this sample belongs to class k, given
its observed feature values are x,?"

- P(x;|y;): conditional probability: “What is the probability of observing the feature values X, in a
sample, given that the sample belongs to class £?”

- P(y): prior probability

- P(x;): evidence

P(ylx;) =

15



Class conditional probability (1)

“Naive” assumption conditional independence of features:
P(x;lyy) = P<xi,1|yk)P(93i,2|yk) "'P(wi,d

d
= H P(%,ﬂyk)
j=1

Y,)

This is called “naive” because this assumption is probably not true in most realistic situations.
(But the classifier may still work OK!)

Also assumes samples are i.i.d.

Class conditional probability (2)

Example: for binary/categorical features, we could compute

- . in,jzyk
P(ﬂ%,j’yk) - N

Y

- N, Vi is the number of samples belonging to class k that have feature j.
’L7J7

. Nyk is the total number of samples belonging to class k.

Example: for cat photo classifier,

P(xi = [has tail, has pointy ears, has fur, purrs when petted, likes to eat fish]|y = cat)

N, N, N, N, N,

N P tail, cat P pointy ears, cat P fur, cat P purrs, cat P eats fish, cat
( Ncat > ( Ncat ) ( Ncat ) < Ncat ) < Ncat )
. 201817 5 15
2020202020
Prior probability
Can estimate prior probability as
P(y,) = al7
& N

Prior probabilities: probability of encountering a particular class k.

.20
Example: 755 photos are cats.

Evidence

We don't actually need P(x;) to make decisions, since it is the same for every class.

16



Naive bayes decision boundary

Uniform prior (both closses e,qua“y ltke,lt/) Pur‘ple, class wore like,fy: shifts distribution "ufh"
Decision Bounp!on,r where P | 1) = P(x | 0) Green class less i'-ke,ll{‘. shifte distribution ‘dlown’
[
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[}
1 |
| |
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Figure 9: Naive bayes decision boundary.

Why generative model?
The generative model solves a more general problem than the discriminative model!
But, only the generative model can be used to generate new samples similar to the training data.

Example: “generate a new sample that is probably a cat.”

17



	In this lecture
	Classification
	Linear classifiers
	Binary classification with linear decision boundary
	Linear classification rule
	Multi-class classification: illustration
	Linear separability
	Non-uniqueness of separating hyperplane
	Non-existence of perfectly separating hyperplane
	Choosing a hyperplane

	Logistic regression
	Probabilistic model for binary classification
	Logistic/sigmoid function
	Logistic function for binary classification
	Logistic function with threshold
	Logistic model as a “soft” classifier
	Logistic classifier properties
	Logistic regression - illustration
	Multi-class logistic regression
	Softmax function
	Softmax function as a PMF
	Softmax function for multi-class logistic regression (1)
	Softmax function for multi-class logistic regression (2)

	Fitting logistic regression model
	Learning model parameters
	Maximum likelihood estimation (1)
	Maximum likelihood estimation (2)
	Maximum likelihood estimation (3)
	Maximum likelihood estimation (4)
	Binary cross-entropy loss function
	Categorical cross-entropy loss function (1)
	Categorical cross-entropy loss function (2)
	Minimizing cross-entropy loss
	Minimizing logistic cross-entropy (1)
	Minimizing logistic cross-entropy (2)
	Minimizing logistic cross-entropy (3)

	Beyond the “recipe”
	Relationships
	Runtime
	Insight from trained model
	Controlling generalization error

	“Recipe” for logistic regression (binary classifier)
	“Recipe” for logistic regression (multi-class classifier)
	Naive Bayes classifier
	Probabilistic models (1)
	Probabilistic models (2)
	Probabilistic models (3)
	Bayes rule
	Class conditional probability (1)
	Class conditional probability (2)
	Prior probability
	Evidence
	Naive bayes decision boundary
	Why generative model?


