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Math prerequisites for this lecture: None.

Feature selection and feature weighting

Feature selection is actually two problems:

- best number
» best subset o

of features
f features

These problems can be solved separately:

- find best subset of feature of every possible size
» then among those, select the best

or they can be solved together, for example:

+ keep adding features until improvement due to another feature is less than some threshold ¢
« keep features whose “score” exceeds some threshold ¢

» etc.

For KNN, feature selection:

« reduces inference time (which scales with d)
+ addresses the “curse of dimensionality”

+ makes the distance measure more useful, by considering only the features that are most relevant
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For KNN, we can also do feature weighting (compute a weight for each feature, scale feature by that
weight) as an alternative to (or in addition to) feature selection - this helps with the third item.

Feature selection is hard!

Computationally hard - even on small problems. In practice, we won’t ever have a guarantee of finding
the optimal subset.

Optimization in two parts

« Search the space of possible feature subsets
- Evaluate the goodness of a feature subset
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Figure 1: Feature selection problem.

Search: exhaustive search
Optimal search: consider every combination of features

+ Given d features, there are 2d possible feature subsets
» Too expensive to try all possibilities!



Search: naive heuristic

- sort d features in order of “goodness”
- select top k features from the list (use CV to choose k?)

Problem: this approach considers each feature independently.

 Doesn’t consider redundancy: if you have two copies of an informative features, they'll both score
high (but you wouldn’t necessarily want to include both in your model).

 Doesn’t consider interaction: if you are going to use a model that can learn interactions “natively”
(which KNN can!), this type of feature selection may exclude features that are not informative them-
selves, but whose combination is informative.
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Figure 2: Example of features that are informative in combination (2, z5), and features that are redun-
dant (z4, T5).

Search: sequential forward selection

- Let S*™! be the set of selected features at time t — 1

+ Train and evaluate model for all combinations of current set + one more feature
- For the next time step S?, add the feature that gave you the best performance.
+ Repeat until termination criterion is satisfied.

This is not necessarily going to find the best feature subset! But, it is a lot faster than the exhaustive
search, and is less likely to include redundant features than naive approach.

Search: sequential forward selection as a tree
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Search: sequential backward elimination as a tree
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Figure 4: Tree representation

“Backward” alternative: start with all features, and “prune” one at a time.

This is not necessarily going to find the best feature subset! But, it is a lot faster than the exhaustive

search. Compared to “forward” search it is, more likely to keep features that are useful in combination
with another feature.
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Figure 5: Feature selection search strategies.



Evaluation of “goodness”
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Figure 6: Which feature should you choose?

« When z is large, y tends to be 1; z; is small, y tends to be O (linear/monotonic relationship)

+ When z, is “medium”, y tends to be 0; x5 is small or large, y tends to be 1 (not linear/monotonic)
- Whatever the value of x, either value of y is equally likely (not useful)

* For most values of &, it is not useful for predicting y, but when x, is 1, y tends to be 0.

Evaluation: univariate scoring

Pseudocode:

for j in X.shape[1]:
score[j] = score_fn(X[:,jl, y)

Note: You can also use the score for feature weighting (multiply the feature by the “score” so that high-
scoring features have larger values): Compared to feature selection, feature weighting does not have the
benefit of faster inference time, but it does have the advantage of not throwing out useful information.

Evaluation: multivariate scoring

Pseudocode:

for j, feat_set in enumerate(feat_sets):
score[j] = score_fn(X[:,feat_set], y)

Evaluation: model-in-the-loop scoring
Pseudocode:

for j, feat_set in enumerate(feat_sets):
score[j] = model.score( X[:,feat_set], y)

Evaluation: “types” of methods

« Filter methods: consider only the statistics of the training data, don’t use the model.
« Wrapper methods: evaluate subsets of features on a model.

Filter methods are usually much faster - but won't necessarily find the features that are optimal for your
particular case.



Evaluation: aligning scoring function with prediction task

Scoring functions from “least closely aligned with the prediction task” to “most closely aligned with the
prediction task”.

- using only statistics of X (e.g. reject features with very low variance) - doesn’t tell you which features
are most useful for predicting y!

- using statistics of X, y (e.g. reject features with small correlation with y) - doesn't tell you which
features are most useful for your model for predicting y!

« using the score of the model on a validation set when trained on the feature(s)

When would it make sense to reject features with low variance? Consider a text classification task with
indicator variables for each word in the vocabulary:

+ the appears in all documents - not useful.
+ historiography appears in a couple of documents - not useful.

Evaluation: scoring functions for filter methods (1)

+ Need to choose “scoring” function that is a good fit for the model
Scoring function:

« Scoring function measures the relationship between X and y.
« For example: correlation coefficient, or F-statistic both of which measures linear relationship be-
tween X and y.

Problem: correlation coefficient scoring metric only captures linear relationship.

« If you expect the relationship to be linear, it's fine!

- If you are using a model (e.g. linear regression) that is only capable of learning linear relationships,
it's fine! You don't want your feature selection method to give a high score to a column if the model
won't be able to learn from it anyway.

Evaluation: scoring functions for filter methods (2)
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Figure 7: F-test selects ; as the most informative feature, Ml selects .



Evaluation: wrapper methods

« Tuned to specific interaction of dataset + model!
+ Usually much more expensive (especially considering model hyperparameter tuning...)

All features

Final subset

(22}

Figure 8: Using a wrapper method to evaluate different feature subsets, on the same/similar objective to
the “real” final ML model.

An option for some models

+ Embedded methods: use something built-in to training algorithm (e.g. LASSO regularization). (Not
available for KNN!)

Recap

« Important: Don’t use the test set for feature selection!
- Feature selection approach should “match” the data, model
- Computation is a concern - it won't be possible to optimize everything
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