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Math prerequisites for this lecture: None.

Feature selection and feature weighting
Feature selection is actually two problems:

• best number of features
• best subset of features

These problems can be solved separately:
• find best subset of feature of every possible size
• then among those, select the best

or they can be solved together, for example:
• keep adding features until improvement due to another feature is less than some threshold 𝑡
• keep features whose “score” exceeds some threshold 𝑡
• etc.

For KNN, feature selection:
• reduces inference time (which scales with 𝑑)
• addresses the “curse of dimensionality”
• makes the distance measure more useful, by considering only the features that are most relevant
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For KNN, we can also do feature weighting (compute a weight for each feature, scale feature by that
weight) as an alternative to (or in addition to) feature selection - this helps with the third item.

Feature selection is hard!

Computationally hard - even on small problems. In practice, we won’t ever have a guarantee of finding
the optimal subset.

Optimization in two parts

• Search the space of possible feature subsets
• Evaluate the goodness of a feature subset

Figure 1: Feature selection problem.

Search: exhaustive search

Optimal search: consider every combination of features

• Given 𝑑 features, there are 2𝑑 possible feature subsets
• Too expensive to try all possibilities!
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Search: naive heuristic

• sort 𝑑 features in order of “goodness”
• select top 𝑘 features from the list (use CV to choose 𝑘?)

Problem: this approach considers each feature independently.
• Doesn’t consider redundancy: if you have two copies of an informative features, they’ll both score
high (but you wouldn’t necessarily want to include both in your model).

• Doesn’t consider interaction: if you are going to use a model that can learn interactions “natively”
(which KNN can!), this type of feature selection may exclude features that are not informative them-
selves, but whose combination is informative.

Figure 2: Example of features that are informative in combination (𝑥1, 𝑥2), and features that are redun-
dant (𝑥4, 𝑥5).

Search: sequential forward selection

• Let 𝑆𝑡−1 be the set of selected features at time 𝑡 − 1
• Train and evaluate model for all combinations of current set + one more feature
• For the next time step 𝑆𝑡, add the feature that gave you the best performance.
• Repeat until termination criterion is satisfied.

This is not necessarily going to find the best feature subset! But, it is a lot faster than the exhaustive
search, and is less likely to include redundant features than naive approach.

Search: sequential forward selection as a tree

Figure 3: Tree representation
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Search: sequential backward elimination as a tree

Figure 4: Tree representation

“Backward” alternative: start with all features, and “prune” one at a time.
This is not necessarily going to find the best feature subset! But, it is a lot faster than the exhaustive
search. Compared to “forward” search it is, more likely to keep features that are useful in combination
with another feature.

Figure 5: Feature selection search strategies.
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Evaluation of “goodness”

Figure 6: Which feature should you choose?

• When 𝑥1 is large, 𝑦 tends to be 1; 𝑥1 is small, 𝑦 tends to be 0 (linear/monotonic relationship)
• When 𝑥2 is “medium”, 𝑦 tends to be 0; 𝑥2 is small or large, 𝑦 tends to be 1 (not linear/monotonic)
• Whatever the value of 𝑥3, either value of 𝑦 is equally likely (not useful)
• For most values of 𝑥4, it is not useful for predicting 𝑦, but when 𝑥4 is 1, 𝑦 tends to be 0.

Evaluation: univariate scoring

Pseudocode:

for j in X.shape[1]:
score[j] = score_fn(X[:,j], y)

Note: You can also use the score for feature weighting (multiply the feature by the “score” so that high-
scoring features have larger values): Compared to feature selection, feature weighting does not have the
benefit of faster inference time, but it does have the advantage of not throwing out useful information.

Evaluation: multivariate scoring

Pseudocode:

for j, feat_set in enumerate(feat_sets):
score[j] = score_fn(X[:,feat_set], y)

Evaluation: model-in-the-loop scoring

Pseudocode:

for j, feat_set in enumerate(feat_sets):
score[j] = model.score( X[:,feat_set], y)

Evaluation: “types” of methods

• Filter methods: consider only the statistics of the training data, don’t use the model.
• Wrapper methods: evaluate subsets of features on a model.

Filter methods are usually much faster - but won’t necessarily find the features that are optimal for your
particular case.
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Evaluation: aligning scoring function with prediction task

Scoring functions from “least closely aligned with the prediction task” to “most closely aligned with the
prediction task”.

• using only statistics of X (e.g. reject features with very low variance) - doesn’t tell you which features
are most useful for predicting y!

• using statistics of X, y (e.g. reject features with small correlation with y) - doesn’t tell you which
features are most useful for your model for predicting y!

• using the score of the model on a validation set when trained on the feature(s)
When would it make sense to reject features with low variance? Consider a text classification task with
indicator variables for each word in the vocabulary:

• the appears in all documents - not useful.
• historiography appears in a couple of documents - not useful.

Evaluation: scoring functions for filter methods (1)

• Need to choose “scoring” function that is a good fit for the model
Scoring function:

• Scoring function measures the relationship between X and y.
• For example: correlation coefficient, or F-statistic both of which measures linear relationship be-
tween X and y.

Problem: correlation coefficient scoring metric only captures linear relationship.
• If you expect the relationship to be linear, it’s fine!
• If you are using a model (e.g. linear regression) that is only capable of learning linear relationships,
it’s fine! You don’t want your feature selection method to give a high score to a column if the model
won’t be able to learn from it anyway.

Evaluation: scoring functions for filter methods (2)

Figure 7: F-test selects 𝑥1 as the most informative feature, MI selects 𝑥2.
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Evaluation: wrapper methods

• Tuned to specific interaction of dataset + model!
• Usually much more expensive (especially considering model hyperparameter tuning…)

Figure 8: Using a wrapper method to evaluate different feature subsets, on the same/similar objective to
the “real” final ML model.

An option for some models

• Embedded methods: use something built-in to training algorithm (e.g. LASSO regularization). (Not
available for KNN!)

Recap

• Important: Don’t use the test set for feature selection!
• Feature selection approach should “match” the data, model
• Computation is a concern - it won’t be possible to optimize everything
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