Contents

Feature selection

Fraida Fund

Optimization intwo parts. . . . . . . . . . . . i e e e e e e e e
Search: exhaustive search . . . . . . . . . .. e

Search: na

Ve heuristic . . . . . . o o o e e e e e e e e e e e e

Search: sequential forward selection . . . . . . . . . . ... ... ... .. e
Search: sequential forward selectionasatree . . . . . . . . .. . . ... ... ... ...
Search: sequential backward eliminationasatree . . ... ... ... ... .......

Evaluation
Evaluation
Evaluation
Evaluation

Evaluation:
Evaluation:
Evaluation:
Evaluation:
Evaluation:

of “goodness” . . . . .. e e e e e
runivariate scoring . . . . . . L L e e e e e e e e e e e
:multivariate scoring . . . . .. L e e e e e
: model-in-the-loopscoring . . . . . . . . . . . .. ... ...
“types”of methods . . . . . . . . . ..
aligning scoring function with predictiontask . . . . . ... ... ... .. ..
scoring functions for filter methods (1) . . . . . . ... ... ... ......
scoring functions for filter methods (2) . . . . .. ... ... ... ......
wrappermethods . . . . . . . ... e e e e e

Anoptionforsomemodels . . . . . . . . ... e e e e

Recap . .

Math prerequisites for this lecture: None.

Feature selection and feature weighting

Feature selection is actually two problems:

- best number
» best subset o

of features
f features

These problems can be solved separately:

- find best subset of feature of every possible size
» then among those, select the best

or they can be solved together, for example:

+ keep adding features until improvement due to another feature is less than some threshold ¢
« keep features whose “score” exceeds some threshold ¢

» etc.

For KNN, feature selection:

« reduces inference time (which scales with d)
+ addresses the “curse of dimensionality”

+ makes the distance measure more useful, by considering only the features that are most relevant

[Sa RO, IS, RS, RS, NNNN

NN



For KNN, we can also do feature weighting (compute a weight for each feature, scale feature by that
weight) as an alternative to (or in addition to) feature selection - this helps with the third item.

Feature selection is hard!

Computationally hard - even on small problems. In practice, we won’t ever have a guarantee of finding
the optimal subset.

Optimization in two parts

« Search the space of possible feature subsets
- Evaluate the goodness of a feature subset

All Peatures

Final subset

Figure 1: Feature selection problem.

Search: exhaustive search
Optimal search: consider every combination of features

+ Given d features, there are 2d possible feature subsets
» Too expensive to try all possibilities!



Search: naive heuristic

- sort d features in order of “goodness”
- select top k features from the list (use CV to choose k?)

Problem: this approach considers each feature independently.

 Doesn’t consider redundancy: if you have two copies of an informative features, they'll both score
high (but you wouldn’t necessarily want to include both in your model).

 Doesn’t consider interaction: if you are going to use a model that can learn interactions “natively”
(which KNN can!), this type of feature selection may exclude features that are not informative them-
selves, but whose combination is informative.

1 1 1

x2 M < x5

Figure 2: Example of features that are informative in combination (2, z5), and features that are redun-
dant (z4, T5).

Search: sequential forward selection

- Let S*™! be the set of selected features at time t — 1

+ Train and evaluate model for all combinations of current set + one more feature
- For the next time step S?, add the feature that gave you the best performance.
+ Repeat until termination criterion is satisfied.

This is not necessarily going to find the best feature subset! But, it is a lot faster than the exhaustive
search, and is less likely to include redundant features than naive approach.

Search: sequential forward selection as a tree

L3
50%
Lx1d [x3] Lnd
52% 61% 61%
L v 3, xnd
L, x2d L, xnd )(?39,37):1 Lx:‘g;/:aj [xéc,(o;:n Lin, xn-13

Figure 3: Tree representation




Search: sequential backward elimination as a tree

L, .., xnd
6%%
Ix] - L3 L |- nas o |IX3 - Lo
69% 2% 61%
IxJ - IxJ - X3 - X - X- IxJ -
Lx3, x1 L3, x23 || Lx3, snd | - §
L, x2] L, snd ?5'% e 647, Lin, sen-11

Figure 4: Tree representation

“Backward” alternative: start with all features, and “prune” one at a time.

This is not necessarily going to find the best feature subset! But, it is a lot faster than the exhaustive

search. Compared to “forward” search it is, more likely to keep features that are useful in combination
with another feature.

Subsets to consider Subsets to consider Subsets to consider in
n exhaustive search n naive search sequential Forward search (example)

All Reatures

L0J, 13, L2, 3], B2 @ B &3 L03, U3, Lad, [3] — [1J

L0413, L0,2], L0,3], 0,07, [1,23, 1131 — 01,33
01,23, 1,37, [2,3], — I3, 11,07, 03,03, 13,27 — 13,01
L0127, L0137, [1,0,33, [1,0,3,23 [1,3,0,21 — [1,3,0,27
[0,2,3], [1,2,3],

LO1,2,3]

Final subset

&

Figure 5: Feature selection search strategies.



Evaluation of “goodness”

Freque_nct/

gl LU0 8 O i |-

0 1 2 0 1 2 0 1 2 0 1 2
X1 x x> x4

Figure 6: Which feature should you choose?

« When z is large, y tends to be 1; z; is small, y tends to be O (linear/monotonic relationship)

+ When z, is “medium”, y tends to be 0; x5 is small or large, y tends to be 1 (not linear/monotonic)
- Whatever the value of x, either value of y is equally likely (not useful)

* For most values of &, it is not useful for predicting y, but when x, is 1, y tends to be 0.

Evaluation: univariate scoring

Pseudocode:

for j in X.shape[1]:
score[j] = score_fn(X[:,jl, y)

Note: You can also use the score for feature weighting (multiply the feature by the “score” so that high-
scoring features have larger values): Compared to feature selection, feature weighting does not have the
benefit of faster inference time, but it does have the advantage of not throwing out useful information.

Evaluation: multivariate scoring

Pseudocode:

for j, feat_set in enumerate(feat_sets):
score[j] = score_fn(X[:,feat_set], y)

Evaluation: model-in-the-loop scoring
Pseudocode:

for j, feat_set in enumerate(feat_sets):
score[j] = model.score( X[:,feat_set], y)

Evaluation: “types” of methods

« Filter methods: consider only the statistics of the training data, don’t use the model.
« Wrapper methods: evaluate subsets of features on a model.

Filter methods are usually much faster - but won't necessarily find the features that are optimal for your
particular case.



Evaluation: aligning scoring function with prediction task

Scoring functions from “least closely aligned with the prediction task” to “most closely aligned with the
prediction task”.

- using only statistics of X (e.g. reject features with very low variance) - doesn’t tell you which features
are most useful for predicting y!

- using statistics of X, y (e.g. reject features with small correlation with y) - doesn't tell you which
features are most useful for your model for predicting y!

« using the score of the model on a validation set when trained on the feature(s)

When would it make sense to reject features with low variance? Consider a text classification task with
indicator variables for each word in the vocabulary:

+ the appears in all documents - not useful.
+ historiography appears in a couple of documents - not useful.

Evaluation: scoring functions for filter methods (1)

+ Need to choose “scoring” function that is a good fit for the model
Scoring function:

« Scoring function measures the relationship between X and y.
« For example: correlation coefficient, or F-statistic both of which measures linear relationship be-
tween X and y.

Problem: correlation coefficient scoring metric only captures linear relationship.

« If you expect the relationship to be linear, it's fine!

- If you are using a model (e.g. linear regression) that is only capable of learning linear relationships,
it's fine! You don't want your feature selection method to give a high score to a column if the model
won't be able to learn from it anyway.

Evaluation: scoring functions for filter methods (2)

F-test=1.00, MI=0.36 F-test=0.28, MI=1.00 F-test=0.00, MI=0.00
o

. w;‘ -a-s'f ,:), o.-t & % 3 3 3
05 7‘;&.’} {. ‘3 s 5 1 g' é §| os ;‘:‘-’. "?.. o s
00 ".':;r .‘.‘fl‘::.~t‘% 00 ‘.:‘ ? 00 :ﬁ :.-'?0::.’“::15 y
05 x’_ﬁ?’i ° —05 1+ -0.5 ': £3 L% oY -
1]

Figure 7: F-test selects ; as the most informative feature, Ml selects .



Evaluation: wrapper methods

« Tuned to specific interaction of dataset + model!
+ Usually much more expensive (especially considering model hyperparameter tuning...)

All features

Final subset

(22}

Figure 8: Using a wrapper method to evaluate different feature subsets, on the same/similar objective to
the “real” final ML model.

An option for some models

+ Embedded methods: use something built-in to training algorithm (e.g. LASSO regularization). (Not
available for KNN!)

Recap

« Important: Don’t use the test set for feature selection!
- Feature selection approach should “match” the data, model
- Computation is a concern - it won't be possible to optimize everything



	Feature selection and feature weighting
	Feature selection is hard!
	Optimization in two parts
	Search: exhaustive search
	Search: naive heuristic
	Search: sequential forward selection
	Search: sequential forward selection as a tree
	Search: sequential backward elimination as a tree
	Evaluation of “goodness”
	Evaluation: univariate scoring
	Evaluation: multivariate scoring
	Evaluation: model-in-the-loop scoring
	Evaluation: “types” of methods
	Evaluation: aligning scoring function with prediction task
	Evaluation: scoring functions for filter methods (1)
	Evaluation: scoring functions for filter methods (2)
	Evaluation: wrapper methods
	An option for some models
	Recap


