
Decision trees

Fraida Fund

Contents
In this lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Flexible decisions with cheap prediction? . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Tree terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Note on notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Stratification of feature space (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Stratification of feature space (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Tree representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Stratification of feature space - illustration . . . . . . . . . . . . . . . . . . . . . . . . . 4

Training a decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Basic idea (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Basic idea (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Recursive binary splitting steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Recursive binary splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Loss function for regression tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Loss function for classification tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Classification error rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
GINI index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Comparison - measures of node impurity . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Conditional entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Information gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Example: should I play tennis? (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Example: should I play tennis? (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Example: should I play tennis? (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Example: should I play tennis? (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Example: should I play tennis? (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Feature importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Bias and variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Managing tree depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Stopping criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pruning classification trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Weakest link pruning (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Weakest link pruning (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Cost complexity pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Summary - so far . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
The good and the bad (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
The good and the bad (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



Math prerequisites for this lecture: None

In this lecture
• Decision trees
• Training decision trees
• Bias and variance of decision trees

Recap
Flexible decisions with cheap prediction?

KNN was very flexible, but prediction is slow.
Next: flexible decisions, non-parametric approach, fast prediction
Idea: In KNN, we find the “neighborhood” of a test point and then give it the value of training points in
that “neighborhood” - but it takes too long at inference time to define the “neighborhood”.
What if we define “neighborhoods” and their values in advance, at training time? Then at inference time,
we only need to determine which “neighborhood” a test point belongs in.
However, we run into another computationally hard problem! To partition the feature space into optimal
neighborhoods is too expensive. Instead, we will rely on some heuristics and get a non-optimal, but good
enough, partition.

Decision tree
Tree terminology

Figure 1: A binary tree.

• size of tree |𝑇 | (number of leaf nodes)
• depth (max length from root node to a leaf node)

Note on notation

Following notation of ISLR, Chapter 8:
• 𝑋𝑗 is feature 𝑗
• 𝑥𝑖 is sample 𝑖
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Stratification of feature space (1)

• Given set of possible predictors, 𝑋1, … , 𝑋𝑝
• Training: Divide predictor space (set of possible values of 𝑋) into 𝐽 non-overlapping regions:

𝑅1, … , 𝑅𝐽 , by splitting sequentially on one feature at a time.

Figure 2: Dividing the feature space with a decision tree.

Stratification of feature space (2)

• Prediction: For each observation that falls in region 𝑅𝑗, predict
– mean of labels of training points in 𝑅𝑗 (regression)
– mode of labels of training points in 𝑅𝑗 (classification)

Tree representation

• At node that is not a leaf: test one feature 𝑋𝑖
• Branch from node depending on value of 𝑋𝑖
• Each leaf node: predict ̂𝑦𝑅𝑚
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Stratification of feature space - illustration

Figure 3: ISLR, Fig. 8.3.

The stratification on the top left cannot be produced by a decision tree using recursive binary splitting.
The other three subfigures represent a single stratification. Note that the decision tree fits a piecewise
step function!

Training a decision tree
Basic idea (1)

• Goal: find the high-dimensional rectangles that minimize error
• Computationally expensive to consider every possible partition

Basic idea (2)

• Instead: recursive binary splitting (top-down, greedy approach)
• Greedy: at each step, make the best decision at that step, without looking ahead and making a
decision that might yield better results at future steps

Recursive binary splitting steps

Start at root of the tree, considering all training samples.
1. At the current node,
2. Find feature 𝑋𝑗 and cutpoint 𝑠 that minimizes some loss function (?)
3. Split training samples at that node into two leaf nodes
4. Stop when no training error (?)
5. Otherwise, repeat at leaf nodes

At step 2, we apply a greedy heuristic - we are choosing the feature that minimizes a loss function in this
iteration only.
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Recursive binary splitting

For any feature 𝑗 and cutpoint 𝑠, define the regions

𝑅1(𝑗, 𝑠) = {𝑋|𝑋𝑗 < 𝑠}, 𝑅2(𝑗, 𝑠) = {𝑋|𝑋𝑗 ≥ 𝑠}

where {𝑋|𝑋𝑗 < 𝑠} is the region of predictor space in which 𝑋𝑗 takes on a value less than 𝑠.

Loss function for regression tree

For regression: look for feature 𝑗 and cutpoint 𝑠 that leads to the greatest possible reduction in squared
error, where the “new” squared error is:

∑
𝑖∶𝑥𝑖∈𝑅1(𝑗,𝑠)

(𝑦𝑖 − ̂𝑦𝑅1
)2 + ∑

𝑖∶𝑥𝑖∈𝑅2(𝑗,𝑠)
(𝑦𝑖 − ̂𝑦𝑅2

)2

( ̂𝑦𝑅𝑗
is the prediction for the samples in 𝑅𝑗.)

Figure 4: Training a regression tree.

Loss function for classification tree

For classification, find a split that minimizes some measure of node impurity:
• A node whose samples all belong to the same class - most pure
• A node whose samples are evenly distributed among all classes - highly impure

Classification error rate

For classification: one possible way is to split on 0-1 loss or misclassification rate:

∑
𝑥𝑖∈𝑅𝑚

1(𝑦𝑖 ≠ ̂𝑦𝑅𝑚
)

Not used often (if you look at the plot - you’ll see why), but used for pruning.

5



GINI index

The GINI index is:

𝐾
∑
𝑘=1

̂𝑝𝑚𝑘(1 − ̂𝑝𝑚𝑘)

where ̂𝑝𝑚𝑘 is the proportion of training samples in 𝑅𝑚 belonging to class 𝑘.
You can see that this is small when all values of ̂𝑝𝑚𝑘 are around 0 or 1.

Entropy

Entropy as a measure of impurity on subset of samples:

−
𝐾

∑
𝑘=1

̂𝑝𝑚𝑘 log2 ̂𝑝𝑚𝑘

where ̂𝑝𝑚𝑘 is the proportion of training samples in 𝑅𝑚 belonging to class 𝑘.

Comparison - measures of node impurity

Figure 5: Measures of node “impurity”.

Conditional entropy

• Splitting on feature 𝑋 creates subsets 𝑆1 and 𝑆2 with different entropies
• Conditional entropy:

Entropy(𝑆|𝑋) = ∑
𝑣

|𝑆𝑣|
|𝑆| Entropy(𝑆𝑣)

Information gain

• Choose feature to split so as to maximize information gain, the expected reduction in entropy due
to splitting on 𝑋:

Gain(𝑆, 𝑋) ∶= Entropy(𝑆) − Entropy(𝑆|𝑋)
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Example: should I play tennis? (1)

Figure 6: Via Tom Mitchell.

Example: should I play tennis? (2)

For top node: 𝑆 = {9+, 5−}, |𝑆| = 14

Entropy(𝑆) = − 9
14 log2

9
14 − 5

14 log2
5
14 = 0.94

Example: should I play tennis? (3)

If we split on Wind:
Considering the Weak branch:

• 𝑆weak = {6+, 2−}, |𝑆weak| = 8
• Entropy(𝑆weak) = −6

8 log2(6
8) − 2

8 log2(2
8) = 0.81

Considering the Strong branch:
• 𝑆strong = {3+, 3−}, |𝑆strong| = 6
• Entropy(𝑆strong) = 1

Figure 7: Considering the split on Wind.

Example: should I play tennis? (4)

Entropy(𝑆) = − 9
14 log2

9
14 − 5

14 log2
5

14 = 0.94
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Entropy(𝑆|Wind) = 8
14Entropy(𝑆weak) + 6

14Entropy(𝑆strong) = 0.89
Gain(𝑆,Wind) = 0.94 − 0.89 = 0.05

Example: should I play tennis? (5)

• Gain(𝑆,Outlook) = 0.246
• Gain(𝑆,Humidity) = 0.151
• Gain(𝑆,Wind) = 0.048
• Gain(𝑆, Temperature) = 0.029

→ Split on Outlook!
In this example, the data had only categorical variables, and no missing values.
What if we had a continuous (not categorical) variable? We would need to also decide how to partition
the continous feature into a discrete set of intervals.
There are a few well-known algorithms for fitting decision trees - CART, ID3, C4.5 - that have different
capabilities with respect to continuous features, features with missing values, and what measure of node
impurity is used.
e.g. C4.5 introduces the idea that if a sample has a missing value for a feature,

• when training, compute information gain using only samples where the feature is defined
• when using, we decide which branch to follow based on which is more probable

Feature importance

• For each feature 𝑋𝑗, find all nodes where the feature was used as the split variable
• Add up information gain due to split (or for GINI index, difference in loss weighted by number of
samples.)

• This sum reflects feature importance
This feature importance can be used for feature selection or feature weighting!
It tends to do reasonable things both with (1) features that are only useful in combination and (2) features
that are highly correlated.

Bias and variance
Managing tree depth

• If tree is too deep - likely to overfit (high variance)
• If tree is not deep enough - likely to have high bias

Figure 8: The depth/size of the tree (number of regions) controls the complexity of the regression line or
decision boundaries, and the bias variance tradeoff.
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Stopping criteria

If we build tree until there is zero error on training set, we have “memorized” training data.
Other stopping criteria:

• Max depth
• Max size (number of leaf nodes)
• Min number of samples to split
• Min number of samples in leaf node
• Min decrease in loss function due to split

(Can select depth, etc. by CV)

Pruning

• Alternative to stopping criteria: build entire tree, then prune
• With greedy algorithm - a very good split may descend from a less-good split

Pruning classification trees

We usually prune classification trees using classification error rate as loss function, even if tree was built
using GINI or entropy.

Weakest link pruning (1)

Prune a large tree from leaves to root:
• Start with full tree 𝑇0
• Merge two adjacent leaf nodes into their parent to obtain 𝑇1 by minimizing:

𝐸𝑟𝑟(𝑇1) − 𝐸𝑟𝑟(𝑇0)
|𝑇0| − |𝑇1|

Weakest link pruning (2)

• Iterate to produce a sequence of trees 𝑇0, 𝑇1, … , 𝑇𝑚 where 𝑇𝑚 is a tree of minimum size.
• Select optimal tree by CV

Cost complexity pruning

Equivalent to: Minimize

|𝑇 |
∑
𝑚=1

∑
𝑥𝑖∈𝑅𝑚

(𝑦𝑖 − ̂𝑦𝑅𝑚
)2 + 𝛼|𝑇 |

Choose 𝛼 by CV, 1-SE rule (↑ 𝛼, ↓ |𝑇 |).
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Figure 9: Weakest link pruning.

Figure 10: Selecting tree from the set of candidate trees.
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Summary - so far
The good and the bad (1)

Good:
• Flexible with much faster inference time than KNN
• Easy to interpret, close to human decision-making
• Can derive feature importance
• Easily handles mixed types, different ranges

The good and the bad (2)

Bad:
• Need greedy heuristic to train
• Deep trees have large variance
• Non-robust: Small change in data can cause large change in estimated tree
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