Support vector machines

Fraida Fund

Contents

Maximal margin classifier	2
Binary classification problem	2
Linear separability	2
Separating hyperplane (1)	2
Separating hyperplane (2)	2
Using the hyperplane to classify	2
Which separating hyperplane is best?	3
Margin	3
Maximal margin classifier	3
Support vectors	4
Constructing the maximal margin classifier	4
Constructing the maximal margin classifier (1)	5
Constructing the maximal margin classifier (2)	6
Problems with MM classifier (1)	6
Problems with MM classifier (2)	6
Support vector classifier	7
Basic idea	7
Constructing the support vector classifier	7
Support vector	8
Illustration of effect of K	8
K controls hias-variance tradeoff	8
	8 8
Compared to logistic regression	8 8
Solution	a
Drohlem formulation - original	a
Droblem formulation - equivalent	a
Droblem formulation - equivalent (2)	0
Background: constrained ontimization	10
Background: Illustration	10
Background: Solving with Lagrangian (1)	10
Background: Solving with Lagrangian (1)	10
Background, Solving with Lagrangian (2)	10
Dackground: Solving with Lagrangian (4)	11
Dackground: Active /inactive constraint	11
Background: Drimal and dual formulation	11
Background: Prinal and Gudi formulation	12
Problem formulation - Lagrangian primat	12
Problem formulation - Lagrangian dual	12
Proplem formulation - Lagrangian dual (2)	13
	13
	13
Solution (3)	- 13

Why solve dual problem?	13
Relationship between SVM and other models	14
Correlation interpretation (1)	14
Correlation interpretation (2)	14

Math prerequisites for this lecture: Constrained optimization (Appendix C in in Boyd and Vandenberghe).

Maximal margin classifier

Binary classification problem

- + n training samples, each with p features $\mathbf{x}_1,\ldots,\mathbf{x}_n\in\mathbb{R}^p$ + Class labels $y_1,\ldots,y_n\in\{-1,1\}$

Linear separability

The problem is **perfectly linearly separable** if there exists a **separating hyperplane** H_i such that

- all $\mathbf{x} \in C_i$ lie on its positive side, and all $\mathbf{x} \in C_j, j \neq i$ lie on its negative side.

Separating hyperplane (1)

The separating hyperplane has the property that for all $i=1,\ldots,n$,

$$w_0 + \sum_{j=1}^p w_j x_{ij} > 0 \text{ if } y_i = 1$$

$$w_0 + \sum_{j=1}^p w_j x_{ij} < 0 \text{ if } y_i = -1$$

Separating hyperplane (2)

Equivalently:

$$y_i\left(w_0 + \sum_{j=1}^p w_j x_{ij}\right) > 0 \tag{1}$$

Using the hyperplane to classify

Then, we can classify a new sample \mathbf{x} using the sign of

$$z = w_0 + \sum_{j=1}^p w_j x_{ij}$$

and we can use the magnitude of z to determine how confident we are about our classification. (Larger z = farther from hyperplane = more confident about classification.)

Which separating hyperplane is best?

Figure 1: If the data is linearly separable, there are many separating hyperplanes.

Previously, with the logistic regression classifier, we found the maximum likelihood classifier: the hyperplane that maximizes the probability of these particular observations.

Margin

For any "candidate" hyperplane,

- Compute perpendicular distance from each sample to separating hyperplane.
- Smallest distance among all samples is called the **margin**.

Figure 2: For this hyperplane, bold lines show the smallest distance (tie among several samples).

Maximal margin classifier

- Choose the line that maximizes the margin!
- Find the widest "slab" we can fit between the two classes.
- Choose the midline of this "slab" as the decision boundary.

Figure 3: Maximal margin classifier. Width of the "slab" is 2x the margin.

Support vectors

- Points that lie on the border of maximal margin hyperplane are **support vectors**
- They "support" the maximal margin hyperplane: if these points move, then the maximal margin hyperplane moves
- Maximal margin hyperplane is not affected by movement of any other point, as long as it doesn't cross borders!

Figure 4: Maximal margin classifier (left) is not affected by movement of a point that is not a support vector (middle) but the hyperplane and/or margin are affected by movement of a support vector (right).

Constructing the maximal margin classifier

To construct this classifier, we will set up a *constrained optimization* problem with:

- an objective
- one or more constraints to satisfy

What should the objective/constraints be in this scenario?

Constructing the maximal margin classifier (1)

$$\max_{\mathbf{w},\gamma}$$
(2)

subject to:
$$\sum_{j=1}^{p} w_j^2 = 1$$
 (3)

and
$$y_i\left(w_0 + \sum_{j=1}^p w_j x_{ij}\right) \ge \gamma, \forall i$$
 (4)

The constraint

$$y_i\left(w_0 + \sum_{j=1}^p w_j x_{ij}\right) \geq \gamma, \forall i$$

guarantees that each observation is on the correct side of the hyperplane *and* on the correct side of the margin, if margin γ is positive. (This is analogous to Equation 1, but we have added a margin.) The constraint

and
$$\sum_{j=1}^p w_j^2 = 1$$

is not really a constraint: if a separating hyperplane is defined by $w_0 + \sum_{j=1}^p w_j x_{ij} = 0$, then for any $k \neq 0$, $k \left(w_0 + \sum_{j=1}^p w_j x_{ij} \right) = 0$ is also a separating hyperplane.

This "constraint" just scales weights so that distance from *i*th sample to the hyperplane is given by $y_i \left(w_0 + \sum_{j=1}^p w_j x_{ij}\right)$. This is what make the previous constraint meaningful!

Figure 5: Maximal margin classifier.

Constructing the maximal margin classifier (2)

The constraints ensure that

- Each observation is on the correct side of the hyperplane, and
- at least γ away from the hyperplane

and γ is maximized.

Problems with MM classifier (1)

Figure 6: When data is not linearly separable, optimization problem has no solution with $\gamma > 0$.

Problems with MM classifier (2)

Figure 7: The classifier is not robust - one new observation can dramatically shift the hyperplane.

Support vector classifier

Basic idea

- · Generalization of MM classifier to non-separable case
- Use a hyperplane that *almost* separates the data
- "Soft margin"

Constructing the support vector classifier

$$\max_{\mathbf{w}, \mathbf{c}, \gamma} \tag{5}$$

subject to:
$$\sum_{j=1}^p w_j^2 = 1$$
 (6)

$$y_i\left(w_0 + \sum_{j=1}^p w_j x_{ij}\right) \geq \gamma(1-\epsilon_i), \forall i \tag{7}$$

$$\epsilon_i \ge 0 \forall i, \quad \sum_{i=1}^n \epsilon_i \le K \tag{8}$$

Figure 8: Support vector classifier. Note: the blue arrows show $y_i \gamma \epsilon_i$.

K is a non-negative tuning parameter.

Slack variable ϵ_i determines where a point lies:

- If $\epsilon_i=0$, point is on the correct side of margin
- If \$\epsilon_i > 0\$, point has violated the margin (wrong side of margin)
 If \$\epsilon_i > 1\$, point is on wrong side of hyperplane and is misclassified

K is the **budget** that determines the number and severity of margin violations we will tolerate.

- $K = 0 \rightarrow$ same as MM classifier
- K > 0, no more than K observations may be on wrong side of hyperplane
- As K increases, margin widens; as K decreases, margin narrows.

Support vector

For a support vector classifier, the only points that affect the classifier are:

- Points that lie on the margin boundary
- Points that violate margin

These are the *support vectors*.

Illustration of effect of K

Figure 9: The margin shrinks as K decreases.

\boldsymbol{K} controls bias-variance tradeoff

- When K is large: many support vectors, variance is low, but bias may be high.
- When K is small: few support vectors, high variance, but low bias.

Terminology note: In ISL and in the first part of these notes, meaning of constant is opposite its meaning in Python sklearn:

- ISL and these notes: Large K, wide margin.
- Python sklearn: Large $ec{C}$, small margin.

Loss function

This problem is equivalent to minimizing hinge loss:

$$\underset{\mathbf{w}}{\text{minimize}} \left(\sum_{i=1}^n \max[0,1-y_i(w_0+\sum_{j=1}^p w_j x_{ij})] + \lambda \sum_{j=1}^p w_j^2 \right)$$

where λ is non-negative tuning parameter.

Zero loss for observations where

$$y_i\left(w_0+\sum_{j=1}^p w_j x_{ij}\right)\geq 1$$

and width of margin depends on $\sum w_j^2$.

Compared to logistic regression

- Hinge loss: zero for points on correct side of margin.
- Logistic regression loss: small for points that are far from decision boundary.

Solution

Problem formulation - original

$$\begin{split} \underset{\mathbf{w},\epsilon,\gamma}{\text{maximize}} & \gamma \\ \text{subject to} & \sum_{j=1}^p w_j^2 = 1 \\ & y_i \left(w_0 + \sum_{j=1}^p w_j x_{ij} \right) \geq \gamma(1-\epsilon_i), \forall i \\ & \epsilon_i \geq 0, \quad \forall i \\ & \sum_{i=1}^n \epsilon_i \leq K \end{split}$$

Problem formulation - equivalent

Remember that any scaled version of the hyperplane is the same line. So let's make ||w|| inversely proportional to γ . Then we can formulate the equivalent problem:

$$\begin{array}{ll} \underset{\mathbf{w},\epsilon}{\text{minimize}} & \sum_{j=1}^{p} w_{j}^{2} \\ \text{subject to} & y_{i} \left(w_{0} + \sum_{j=1}^{p} w_{j} x_{ij} \right) \geq 1 - \epsilon_{i}, \forall i \\ & \epsilon_{i} \geq 0, \quad \forall i \\ & \sum_{i=1}^{n} \epsilon_{i} \leq K \end{array}$$

Problem formulation - equivalent (2)

Or, move the "budget" into the objective function:

$$\begin{split} & \underset{\mathbf{w}, \epsilon}{\text{minimize}} \quad \frac{1}{2} \sum_{j=1}^{p} w_{j}^{2} + C \sum_{i=1}^{n} \epsilon_{i} \\ & \text{subject to} \quad y_{i}(w_{0} + \sum_{j=1}^{p} w_{j} x_{ij}) \geq 1 - \epsilon_{i}, \quad \forall i \\ & \epsilon_{i} \geq 0, \quad \forall i \end{split}$$

Background: constrained optimization

Basic formulation of contrained optimization problem:

- **Objective**: Minimize f(x)
- Constraint(s): subject to $g(x) \leq 0$

Find x^* that satisfies $g(x^*) \le 0$ and, for any other x that satisfies $g(x) \le 0$, $f(x) \ge f(x^*)$.

Background: Illustration

Figure 10: Minimizing objective function, without (left) and with (right) a constraint.

Background: Solving with Lagrangian (1)

To solve, we form the Lagrangian:

$$L(x,\lambda)=f(x)+\lambda_1g_1(x)+\cdots+\lambda_mg_m(x)$$

where each $\lambda \ge 0$ is a Lagrange multiplier.

The $\lambda g(x)$ terms "pull" solution toward feasible set, away from non-feasible set.

Background: Solving with Lagrangian (2)

Then, to solve, we use joint optimization over x and λ :

$$\underset{x}{\text{minimize maximize }} f(x) + \lambda g(x)$$

over x and λ .

("Solve" in the usual way if the function is convex: by taking partial derivative of $L(x, \lambda)$ with respect to each argument, and setting it to zero. The solution to the original function will be a saddle point in the Lagrangian.)

Background: Solving with Lagrangian (3)

 $\underset{x}{\text{minimize maximize }} f(x) + \lambda g(x)$

Suppose that for the x that minimizes f(x), $g(x) \leq 0$

(i.e. x is in the feasible set.)

If g(x) < 0 (constraint is not active),

- to maximize: we want $\lambda = 0$
- to minimize: we'll minimize f(x), $\lambda g(x) = 0$

Background: Solving with Lagrangian (4)

$$\underset{x}{\operatorname{minimize}} \underset{\lambda \geq 0}{\operatorname{maximize}} f(x) + \lambda g(x)$$

Suppose that for the x that minimizes f(x), g(x) > 0

(x is not in the feasible set.)

- to maximize: we want $\lambda > 0$
- to minimize: we want small g(x) and f(x).

In this case, the "pull" between

- the x that minimizes f(x)
- and the $\lambda g(x)$ which pulls toward the feasible set,

ends up making the constraint "tight". We will use the x on the edge of the feasible set (g(x) = 0, constraint is active) for which f(x) is smallest.

This is called the KKT complementary slackness condition: for every constraint, $\lambda g(x) = 0$, either because $\lambda = 0$ (inactive constraint) or g(x) = 0 (active constraint).

Background: Active/inactive constraint

Figure 11: Optimization with inactive, active constraint.

Background: Primal and dual formulation

Under the right conditions, the solution to the *primal* problem:

$$\min_x \max_{\lambda \geq 0} L(x,\lambda)$$

is the same as the solution to the *dual* problem:

$$\underset{\lambda \geq 0}{\operatorname{maximize}} \underset{x}{\operatorname{minimize}} L(x,\lambda)$$

Problem formulation - Lagrangian primal

Back to our SVC problem - let's form the Lagrangian and optimize:

$$\begin{split} \underset{\mathbf{w}, \boldsymbol{\epsilon}}{\text{minimize}} & \underset{\alpha_i \geq 0, \mu_i \geq 0, \forall i}{\text{maximize}} \quad \frac{1}{2} \sum_{j=1}^p w_j^2 \\ & + C \sum_{i=1}^n \epsilon_i \\ & - \sum_{i=1}^n \alpha_i \left[y_i (w_0 + \sum_{j=1}^p w_j x_{ij}) - (1 - \epsilon_i) \right] \\ & - \sum_{i=1}^n \mu_i \epsilon_i \end{split}$$

This is the *primal* problem.

Problem formulation - Lagrangian dual

The equivalent *dual* problem:

$$\begin{array}{ll} \underset{\alpha_i \geq 0, \mu_i \geq 0, \forall i}{\text{minimize}} & \frac{1}{2} \sum_{j=1}^p w_j^2 \\ & + C \sum_{i=1}^n \epsilon_i \\ & - \sum_{i=1}^n \alpha_i \left[y_i (w_0 + \sum_{j=1}^p w_j x_{ij}) - (1 - \epsilon_i) \right] \\ & - \sum_{i=1}^n \mu_i \epsilon_i \end{array}$$

We solve this by taking the derivatives with respect to w, ϵ and setting them to zero. Then, we plug those values back into the dual equation...

Problem formulation - Lagrangian dual (2)

$$\begin{array}{ll} \underset{\alpha_i\geq 0,\forall i}{\text{maximize}} & \sum_{i=1}^n \alpha_i - \frac{1}{2}\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \\ \text{subject to} & \sum_{i=1}^n \alpha_i y_i = 0 \\ & 0 \leq \alpha_i \leq C, \quad \forall i \end{array}$$

This turns out to be not too terrible to solve. α is non-zero only when the constraint is active - only for support vectors.

Solution (1)

Optimal coefficients for $j = 1, \dots, p$ are:

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i \mathbf{x}_i$$

where α_i^* come from the solution to the dual problem.

Solution (2)

- $\alpha_i^* > 0$ only when x_i is a support vector (active constraint). Otherwise, $\alpha_i^* = 0$ (inactive constraint).

Solution (3)

That leaves w_0^st - we can solve

$$w_0^* = y_i - \sum_{j=1}^p w_j \mathbf{x}_i$$

using any sample i where $\alpha_i^* > 0$, i.e. any support vector.

Why solve dual problem?

For high-dimension problems (many features), dual problem can be much faster to solve than primal problem:

- Primal problem: optimize over p + 1 coefficients.
- Dual problem: optimize over n dual variables, but there are only as many non-zero ones as there are support vectors.

Also: the kernel trick, which we'll discuss next...

Relationship between SVM and other models

- Like a logistic regression linear classifier, separating hyperplane is $w_0 + \sum_{j=1}^p w_j x_{ij} = 0$
- Like a weighted KNN predicted label is weighted average of labels for support vectors, with weights proportional to "similarity" of test sample and support vector.

Correlation interpretation (1)

Given a new sample \mathbf{x} to classify, compute

$$\hat{z}(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j x_j = w_0 + \sum_{i=1}^n \alpha_i y_i \sum_{j=1}^p x_{ij} x_j$$

Measures inner product (a kind of "correlation") between new sample and each support vector.

Correlation interpretation (2)

Classifier output (assuming -1,1 labels):

$$\hat{y}(\mathbf{x}) = \operatorname{sign}(\hat{z}(\mathbf{x}))$$

Predicted label is weighted average of labels for support vectors, with weights proportional to "correlation" of test sample and support vector.