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Math prerequisites for this lecture: Constrained optimization (Appendix C in in Boyd and Vandenberghe).

Maximal margin classifier
Binary classification problem

• 𝑛 training samples, each with 𝑝 features 𝐱1, … , 𝐱𝑛 ∈ ℝ𝑝

• Class labels 𝑦1, … , 𝑦𝑛 ∈ {−1, 1}

Linear separability

The problem is perfectly linearly separable if there exists a separating hyperplane 𝐻𝑖 such that
• all 𝐱 ∈ 𝐶𝑖 lie on its positive side, and
• all 𝐱 ∈ 𝐶𝑗, 𝑗 ≠ 𝑖 lie on its negative side.

Separating hyperplane (1)

The separating hyperplane has the property that for all 𝑖 = 1, … , 𝑛,

𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗 > 0 if 𝑦𝑖 = 1

𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗 < 0 if 𝑦𝑖 = −1

Separating hyperplane (2)

Equivalently:

𝑦𝑖 (𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗) > 0 (1)

Using the hyperplane to classify

Then, we can classify a new sample 𝐱 using the sign of

𝑧 = 𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗

and we can use the magnitude of 𝑧 to determine how confident we are about our classification. (Larger
𝑧 = farther from hyperplane = more confident about classification.)
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Which separating hyperplane is best?

Figure 1: If the data is linearly separable, there are many separating hyperplanes.

Previously, with the logistic regression classifier, we found the maximum likelihood classifier: the hyper-
plane that maximizes the probability of these particular observations.

Margin

For any “candidate” hyperplane,
• Compute perpendicular distance from each sample to separating hyperplane.
• Smallest distance among all samples is called the margin.

Figure 2: For this hyperplane, bold lines show the smallest distance (tie among several samples).

Maximal margin classifier

• Choose the line that maximizes the margin!
• Find the widest “slab” we can fit between the two classes.
• Choose the midline of this “slab” as the decision boundary.

Figure 3: Maximal margin classifier. Width of the “slab” is 2x the margin.

3



Support vectors

• Points that lie on the border of maximal margin hyperplane are support vectors
• They “support” the maximal margin hyperplane: if these points move, then the maximal margin
hyperplane moves

• Maximal margin hyperplane is not affected by movement of any other point, as long as it doesn’t
cross borders!

Figure 4: Maximal margin classifier (left) is not affected by movement of a point that is not a support
vector (middle) but the hyperplane and/or margin are affected by movement of a support vector (right).

Constructing the maximal margin classifier

To construct this classifier, we will set up a constrained optimization problem with:
• an objective
• one or more constraints to satisfy

What should the objective/constraints be in this scenario?
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Constructing the maximal margin classifier (1)

maximize
𝐰,𝛾

𝛾 (2)

subject to:
𝑝

∑
𝑗=1

𝑤2
𝑗 = 1 (3)

and 𝑦𝑖 (𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗) ≥ 𝛾, ∀𝑖 (4)

The constraint

𝑦𝑖 (𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗) ≥ 𝛾, ∀𝑖

guarantees that each observation is on the correct side of the hyperplane and on the correct side of the
margin, if margin 𝛾 is positive. (This is analogous to Equation 1, but we have added a margin.)
The constraint

and
𝑝

∑
𝑗=1

𝑤2
𝑗 = 1

is not really a constraint: if a separating hyperplane is defined by 𝑤0 + ∑𝑝
𝑗=1 𝑤𝑗𝑥𝑖𝑗 = 0, then for any

𝑘 ≠ 0, 𝑘 (𝑤0 + ∑𝑝
𝑗=1 𝑤𝑗𝑥𝑖𝑗) = 0 is also a separating hyperplane.

This “constraint” just scales weights so that distance from 𝑖th sample to the hyperplane is given by
𝑦𝑖 (𝑤0 + ∑𝑝

𝑗=1 𝑤𝑗𝑥𝑖𝑗). This is what make the previous constraint meaningful!

Figure 5: Maximal margin classifier.
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Constructing the maximal margin classifier (2)

The constraints ensure that
• Each observation is on the correct side of the hyperplane, and
• at least 𝛾 away from the hyperplane

and 𝛾 is maximized.

Problems with MM classifier (1)

Figure 6: When data is not linearly separable, optimization problem has no solution with 𝛾 > 0.

Problems with MM classifier (2)

Figure 7: The classifier is not robust - one new observation can dramatically shift the hyperplane.
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Support vector classifier
Basic idea

• Generalization of MM classifier to non-separable case
• Use a hyperplane that almost separates the data
• “Soft margin”

Constructing the support vector classifier

maximize
𝐰,𝝐,𝛾

𝛾 (5)

subject to:
𝑝

∑
𝑗=1

𝑤2
𝑗 = 1 (6)

𝑦𝑖 (𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗) ≥ 𝛾(1 − 𝜖𝑖), ∀𝑖 (7)

𝜖𝑖 ≥ 0∀𝑖,
𝑛

∑
𝑖=1

𝜖𝑖 ≤ 𝐾 (8)

Figure 8: Support vector classifier. Note: the blue arrows show 𝑦𝑖𝛾𝜖𝑖.

𝐾 is a non-negative tuning parameter.
Slack variable 𝜖𝑖 determines where a point lies:

• If 𝜖𝑖 = 0, point is on the correct side of margin
• If 𝜖𝑖 > 0, point has violated the margin (wrong side of margin)
• If 𝜖𝑖 > 1, point is on wrong side of hyperplane and is misclassified

𝐾 is the budget that determines the number and severity of margin violations we will tolerate.
• 𝐾 = 0 → same as MM classifier
• 𝐾 > 0, no more than 𝐾 observations may be on wrong side of hyperplane
• As 𝐾 increases, margin widens; as 𝐾 decreases, margin narrows.
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Support vector

For a support vector classifier, the only points that affect the classifier are:
• Points that lie on the margin boundary
• Points that violate margin

These are the support vectors.

Illustration of effect of 𝐾

Figure 9: The margin shrinks as 𝐾 decreases.

𝐾 controls bias-variance tradeoff

• When 𝐾 is large: many support vectors, variance is low, but bias may be high.
• When 𝐾 is small: few support vectors, high variance, but low bias.

Terminology note: In ISL and in the first part of these notes, meaning of constant is opposite its meaning
in Python sklearn:

• ISL and these notes: Large 𝐾 , wide margin.
• Python sklearn: Large 𝐶 , small margin.

Loss function

This problem is equivalent to minimizing hinge loss:

minimize
𝐰

(
𝑛

∑
𝑖=1

max[0, 1 − 𝑦𝑖(𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗)] + 𝜆
𝑝

∑
𝑗=1

𝑤2
𝑗)

where 𝜆 is non-negative tuning parameter.
Zero loss for observations where

𝑦𝑖 (𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗) ≥ 1

and width of margin depends on ∑ 𝑤2
𝑗 .

Compared to logistic regression

• Hinge loss: zero for points on correct side of margin.
• Logistic regression loss: small for points that are far from decision boundary.
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Solution
Problem formulation - original

maximize
𝐰,𝝐,𝛾

𝛾

subject to
𝑝

∑
𝑗=1

𝑤2
𝑗 = 1

𝑦𝑖 (𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗) ≥ 𝛾(1 − 𝜖𝑖), ∀𝑖

𝜖𝑖 ≥ 0, ∀𝑖
𝑛

∑
𝑖=1

𝜖𝑖 ≤ 𝐾

Problem formulation - equivalent

Remember that any scaled version of the hyperplane is the same line. So let’s make ||𝑤|| inversely
proportional to 𝛾. Then we can formulate the equivalent problem:

minimize
𝐰,𝝐

𝑝
∑
𝑗=1

𝑤2
𝑗

subject to 𝑦𝑖 (𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗) ≥ 1 − 𝜖𝑖, ∀𝑖

𝜖𝑖 ≥ 0, ∀𝑖
𝑛

∑
𝑖=1

𝜖𝑖 ≤ 𝐾

Problem formulation - equivalent (2)

Or, move the “budget” into the objective function:

minimize
𝐰,𝝐

1
2

𝑝
∑
𝑗=1

𝑤2
𝑗 + 𝐶

𝑛
∑
𝑖=1

𝜖𝑖

subject to 𝑦𝑖(𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗) ≥ 1 − 𝜖𝑖, ∀𝑖

𝜖𝑖 ≥ 0, ∀𝑖
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Background: constrained optimization

Basic formulation of contrained optimization problem:
• Objective: Minimize 𝑓(𝑥)
• Constraint(s): subject to 𝑔(𝑥) ≤ 0

Find 𝑥∗ that satisfies 𝑔(𝑥∗) ≤ 0 and, for any other 𝑥 that satisfies 𝑔(𝑥) ≤ 0, 𝑓(𝑥) ≥ 𝑓(𝑥∗).

Background: Illustration

Figure 10: Minimizing objective function, without (left) and with (right) a constraint.

Background: Solving with Lagrangian (1)

To solve, we form the Lagrangian:

𝐿(𝑥, 𝜆) = 𝑓(𝑥) + 𝜆1𝑔1(𝑥) + ⋯ + 𝜆𝑚𝑔𝑚(𝑥)
where each 𝜆 ≥ 0 is a Lagrange multiplier.
The 𝜆𝑔(𝑥) terms “pull” solution toward feasible set, away from non-feasible set.

Background: Solving with Lagrangian (2)

Then, to solve, we use joint optimization over 𝑥 and 𝜆:

minimize
𝑥

maximize
𝜆≥0

𝑓(𝑥) + 𝜆𝑔(𝑥)

over 𝑥 and 𝜆.
(“Solve” in the usual way if the function is convex: by taking partial derivative of 𝐿(𝑥, 𝜆) with respect to
each argument, and setting it to zero. The solution to the original function will be a saddle point in the
Lagrangian.)
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Background: Solving with Lagrangian (3)

minimize
𝑥

maximize
𝜆≥0

𝑓(𝑥) + 𝜆𝑔(𝑥)

Suppose that for the 𝑥 that minimizes 𝑓(𝑥), 𝑔(𝑥) ≤ 0
(i.e. 𝑥 is in the feasible set.)
If 𝑔(𝑥) < 0 (constraint is not active),

• to maximize: we want 𝜆 = 0
• to minimize: we’ll minimize 𝑓(𝑥), 𝜆𝑔(𝑥) = 0

Background: Solving with Lagrangian (4)

minimize
𝑥

maximize
𝜆≥0

𝑓(𝑥) + 𝜆𝑔(𝑥)

Suppose that for the 𝑥 that minimizes 𝑓(𝑥), 𝑔(𝑥) > 0
(𝑥 is not in the feasible set.)

• to maximize: we want 𝜆 > 0
• to minimize: we want small 𝑔(𝑥) and 𝑓(𝑥).

In this case, the “pull” between
• the 𝑥 that minimizes 𝑓(𝑥)
• and the 𝜆𝑔(𝑥) which pulls toward the feasible set,

ends up making the constraint “tight”. We will use the 𝑥 on the edge of the feasible set (𝑔(𝑥) = 0,
constraint is active) for which 𝑓(𝑥) is smallest.

This is called the KKT complementary slackness condition: for every constraint, 𝜆𝑔(𝑥) = 0, either be-
cause 𝜆 = 0 (inactive constraint) or 𝑔(𝑥) = 0 (active constraint).

Background: Active/inactive constraint

Figure 11: Optimization with inactive, active constraint.
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Background: Primal and dual formulation

Under the right conditions, the solution to the primal problem:

minimize
𝑥

maximize
𝜆≥0

𝐿(𝑥, 𝜆)

is the same as the solution to the dual problem:

maximize
𝜆≥0

minimize
𝑥

𝐿(𝑥, 𝜆)

Problem formulation - Lagrangian primal

Back to our SVC problem - let’s form the Lagrangian and optimize:

minimize
𝐰,𝝐

maximize
𝛼𝑖≥0,𝜇𝑖≥0,∀𝑖

1
2

𝑝
∑
𝑗=1

𝑤2
𝑗

+ 𝐶
𝑛

∑
𝑖=1

𝜖𝑖

−
𝑛

∑
𝑖=1

𝛼𝑖 [𝑦𝑖(𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗) − (1 − 𝜖𝑖)]

−
𝑛

∑
𝑖=1

𝜇𝑖𝜖𝑖

This is the primal problem.

Problem formulation - Lagrangian dual

The equivalent dual problem:

maximize
𝛼𝑖≥0,𝜇𝑖≥0,∀𝑖

minimize
𝐰,𝝐

1
2

𝑝
∑
𝑗=1

𝑤2
𝑗

+ 𝐶
𝑛

∑
𝑖=1

𝜖𝑖

−
𝑛

∑
𝑖=1

𝛼𝑖 [𝑦𝑖(𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗) − (1 − 𝜖𝑖)]

−
𝑛

∑
𝑖=1

𝜇𝑖𝜖𝑖

We solve this by taking the derivatives with respect to 𝐰, 𝝐 and setting them to zero. Then, we plug those
values back into the dual equation…
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Problem formulation - Lagrangian dual (2)

maximize
𝛼𝑖≥0,∀𝑖

𝑛
∑
𝑖=1

𝛼𝑖 − 1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐱𝑇
𝑖 𝐱𝑗

subject to
𝑛

∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖
This turns out to be not too terrible to solve. 𝛼 is non-zero only when the constraint is active - only for
support vectors.

Solution (1)

Optimal coefficients for 𝑗 = 1, … , 𝑝 are:

𝐰∗ =
𝑛

∑
𝑖=1

𝛼∗
𝑖𝑦𝑖𝐱𝑖

where 𝛼∗
𝑖 come from the solution to the dual problem.

Solution (2)

• 𝛼∗
𝑖 > 0 only when 𝑥𝑖 is a support vector (active constraint).

• Otherwise, 𝛼∗
𝑖 = 0 (inactive constraint).

Solution (3)

That leaves 𝑤∗
0 - we can solve

𝑤∗
0 = 𝑦𝑖 −

𝑝
∑
𝑗=1

𝑤𝑗𝐱𝑖

using any sample 𝑖 where 𝛼∗
𝑖 > 0, i.e. any support vector.

Why solve dual problem?

For high-dimension problems (many features), dual problem can be much faster to solve than primal
problem:

• Primal problem: optimize over 𝑝 + 1 coefficients.
• Dual problem: optimize over 𝑛 dual variables, but there are only as many non-zero ones as there
are support vectors.

Also: the kernel trick, which we’ll discuss next…
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Relationship between SVM and other models

• Like a logistic regression - linear classifier, separating hyperplane is 𝑤0 + ∑𝑝
𝑗=1 𝑤𝑗𝑥𝑖𝑗 = 0

• Like a weighted KNN - predicted label is weighted average of labels for support vectors, with weights
proportional to “similarity” of test sample and support vector.

Correlation interpretation (1)

Given a new sample 𝐱 to classify, compute

̂𝑧(𝐱) = 𝑤0 +
𝑝

∑
𝑗=1

𝑤𝑗𝑥𝑗 = 𝑤0 +
𝑛

∑
𝑖=1

𝛼𝑖𝑦𝑖

𝑝
∑
𝑗=1

𝑥𝑖𝑗𝑥𝑗

Measures inner product (a kind of “correlation”) between new sample and each support vector.

Correlation interpretation (2)

Classifier output (assuming -1,1 labels):

̂𝑦(𝐱) = sign( ̂𝑧(𝐱))
Predicted label is weighted average of labels for support vectors, with weights proportional to “correla-
tion” of test sample and support vector.
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