
Neural networks

Fraida Fund

Contents
In this lecture . 2
From linear to non-linear . 3

Representation as a computational graph . 3
Example: synthetic data . 5
Model of example two-stage network (1) . 5
Model of example two-stage network (2) . 6
Example: output of each hidden node . 6
Example: output of output node . 6
Matrix form of two stage network . 7

Neural networks . 7
Terminology . 7
Setting up a neural network - givens . 7
Binary classification… . 7
Multi-class classification… . 8
Regression with one output… . 8
Regression with multiple outputs… . 8
Setting up a neural network - decisions . 8
Dimension (1) . 8
Dimension (2) . 9
Activation functions at hidden layer: identity? . 9
Activation functions at hidden layer: binary step . 9
Activation functions at hidden layer: some choices . 9

Neural network - summary . 10
Things that are “given” . 10
Things that we decide . 10
Training the network . 10

Backpropagation . 11
How to compute gradients? . 11
Composite functions and computational graphs . 11
Forward pass on computational graph . 11
Derivative of composite function . 12
Backward pass on computational graph . 12
Neural network computational graph . 12
Backpropagation error: definition . 13
Output unit: backpropagation error (accumulated) . 13
Output unit: derivative vs input weights (local) . 14
Hidden unit: backpropagation error (accumulated) . 15
Hidden unit: derivative vs input weights (local) . 16
Backpropagation + gradient descent algorithm (1) . 17
Backpropagation + gradient descent algorithm (2) . 17
Backpropagation + gradient descent algorithm (3) . 17

1

Why is backpropagation so important? . 18
Forward-mode differentiation . 18
Reverse-mode differentiation . 19

In this lecture
• Neural network
• Structure of a neural network
• Training a neural network

Math prerequisites for this lecture: You should know about:
• derivatives and especially the chain rule (Appendix C in Boyd and Vandenberghe)

2

From linear to non-linear
Representation as a computational graph

Let’s represent the linear regression and logistic regression models using a computational graph.

Figure 1: Regression and classification models.

We can use also do a linear regression or logistic regression with a basis function transformation applied
to the data first. Here, we have one “transformation” node for each basis function, and then the output
of those “transformation” nodes become the input to the logistic regression (or linear regression).

Figure 2: With a basis function transformation.

3

We can also represent the SVM with a linear or non-linear kernel using a computational graph.
Here, we have one “transformation node” for each training sample! (The “transformation” is the kernel
function, which is computed over the input sample and the training sample).
Then the weighted sum of those nodes (weighted by 𝛼𝑖, which is learned by the SVM, and which is zero
for every non-support vector training sample and non-zero for every support vector training sample) is
used to compute the class label.

Figure 3: SVM computational graph.

In those regression and classification models, we use a fixed basis function to transform features. We
only learned the weights to map the transformed features to a continuous output (regression) or to a
class label (classification).
Would it be possible to also learn the first part - the mapping of the features to a transformed feature
space?

Figure 4: Can we learn this mapping to transformed feature space?

4

Example: synthetic data

Figure 5: Example via Sundeep Rangan

Model of example two-stage network (1)

First step (hidden layer):
• Take 𝑁𝐻 = 4 “logistic regression” nodes.
• Use 𝐱 as input to each node.
• At each node 𝑚, first compute: 𝑧𝐻,𝑚 = 𝐰𝑇

𝐻,𝑚𝐱
• Then, at each node, apply a sigmoid: 𝑢𝐻,𝑚 = 𝑔𝐻(𝑧𝐻,𝑚) = 1

1+𝑒−𝑧𝐻,𝑚

Note: assume a 1s column was added to the data matrix, so we don’t need a separate intercept term.

Figure 6: Computation at one hidden node.

Figure 7: Computation at four hidden nodes.

At this point, we have some representation of the data in ℝ4.

5

https://github.com/sdrangan/introml/blob/master/unit09_neural/demo1_synthetic.ipynb

Model of example two-stage network (2)

Second step (output layer):

• At output node, first compute: 𝑧𝑂 = 𝐰𝑇
𝑂[1, 𝐮𝐻]

• Then, compute: 𝑢𝑂 = 𝑔𝑂(𝑧𝑂) = 1
1+𝑒−𝑧𝑂

• (Not in the graph): apply a threshold to get ̂𝑦
Notes:

• we use the output of the previous layer as input to this layer
• as with the first layer, we add a 1s column to the input, to take care of the intercept term.

Figure 8: Two-stage network.

What does the output look like (over the feature space) at each node?

Example: output of each hidden node

Figure 9: Example via Sundeep Rangan

Example: output of output node

Figure 10: Via Sundeep Rangan

6

https://github.com/sdrangan/introml/blob/master/unit09_neural/demo1_synthetic.ipynb
https://github.com/sdrangan/introml/blob/master/unit09_neural/demo1_synthetic.ipynb

Matrix form of two stage network

• Hidden layer: 𝐳𝐻 = 𝐖𝑇
𝐻𝐱, 𝐮𝐻 = 𝑔𝐻(𝐳𝐻)

• Output layer: 𝑧𝑂 = 𝐖𝑇
𝑂[1, 𝐮𝐻], 𝑢𝑂 = 𝑔𝑂(𝐳𝑂)

Neural networks
Terminology

• Hidden variables: the variables 𝐳𝐻, 𝐮𝐻 , which are not directly observed.
• Hidden units: the nodes that compute the hidden variables.
• Activation function: the function 𝑔(𝑧)
• Output units: the node(s) that compute 𝑧𝑂.

Setting up a neural network - givens

For a particular problem, these are “given”:
• the number of inputs
• the number of outputs
• the activation function to use at the output
• the loss function

The number of inputs comes from the data - what is the size of each training sample?
The number of outputs is dictated by the type of problem -

• binary classification: we need to predict 𝑃(𝑦 = 1) which is a single quantity, so we have one
output unit.

• multi-class classification: we will predict 𝑃(𝑦 = 𝑘) for each class 𝑘, so we need an output unit for
each class.

• regression: if we need to predict a single target, we will have one output unit. If we need to predict
multiple values in the same problem (vector output), we will have as many output units as there
are values in the output.

Similarly, the activation function at the output unit and the loss function are dictated by the problem!

Binary classification…

For binary classification, 𝑦 ∈ [0, 1]:
• Use sigmoid activation 𝑔𝑂, output will be: 𝑢𝑂 = 𝑃(𝑦 = 1|𝑥) = 1

1+𝑒−𝑧𝑂
• 𝑢𝑂 is scalar - need one output node
• Use binary cross entropy loss:

𝐿(𝐖) =
𝑛

∑
𝑖=1

−𝑦𝑖𝑧𝑂𝑖 + ln(1 + 𝑒𝑧𝑂𝑖)

Then you select the predicted label by applying a threshold to the output 𝑢𝑂.
The mapping from transformed feature space to output is just like a logistic regression - we haven’t
changed that part!

7

Multi-class classification…

For multi-class classification, 𝑦 = 1, … , 𝐾 :

• Use softmax activation 𝑔𝑂, output will be: 𝑢𝑂,𝑘 = 𝑃(𝑦 = 𝑘|𝑥) = 𝑒𝑧𝑂,𝑘

∑𝐾
ℓ=1 𝑒𝑧ℓ

• 𝑢𝑂 is vector [𝑢0, … , 𝑢𝐾] - need 𝐾 output nodes
• Use categorical cross entropy loss:

𝐿(𝐖) =
𝑛

∑
𝑖=1

[ln(∑
𝑘

𝑒𝑧𝑂𝑖𝑘) − ∑
𝑘

𝑟𝑖𝑘𝑧𝑂𝑖𝑘]

Then you can select predicted label by ̂𝑦 = argmax𝑘 𝑢𝑂,𝑘

Regression with one output…

For regression, 𝑦 ∈ 𝑅1:
• Use linear activation 𝑔𝑂, output will be: 𝑢𝑂 = 𝑧𝑂
• 𝑢𝑂 is scalar - need one output node
• Use L2 loss:

𝐿(𝐖) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑧𝑂𝑖)2

Regression with multiple outputs…

For regression, 𝑦 ∈ 𝑅𝐾 :
• Use linear activation 𝑔𝑂, output will be: 𝑢𝑂,𝑘 = 𝑧𝑂,𝑘
• 𝑢𝑂 is vector [𝑢0, … , 𝑢𝐾] - need 𝐾 output nodes
• Use vector L2 loss:

𝐿(𝐖) =
𝑛

∑
𝑖=1

𝐾
∑
𝑘=1

(𝑦𝑖𝑘 − 𝑧𝑂𝑖𝑘)2

Setting up a neural network - decisions

We still need to decide:
• the number of hidden units
• the activation function to use at hidden units

Dimension (1)

• 𝑁𝐼 = input dimension, number of features
• 𝑁𝐻 = number of hidden units, you decide!
• 𝑁𝑂 = output dimension, number of outputs

8

Dimension (2)

Parameter Symbol Number of parameters

Hidden layer: weights 𝑊𝐻 𝑁𝐻(𝑁𝐼 + 1)
Output layer: weights 𝑊𝑂 𝑁𝑂(𝑁𝐻 + 1)
Total 𝑁𝐻(𝑁𝐼 + 1) + 𝑁𝑂(𝑁𝐻 + 1)

Activation functions at hidden layer: identity?

• Suppose we use 𝑔(𝑧) = 𝑧 (identity function) as activation function throughout the network.
• The network can only achieve linear decision boundary/ output!
• To get non-linear decision boundary/output, need non-linear activation functions.

Universal approximation theorem: under certain conditions, with enough (finite) hidden nodes, can ap-
proximate any continuous real-valued function, to any degree of precision. But only with non-linear
activation! (See this post for a convincing demonstration.)
(The more hidden units we have, the more complex a function we can represent.)
By scaling, shifting, and adding a bunch of “step” or “step-like” functions, you can approximate a compli-
cated function. What step-like function can you use?

Activation functions at hidden layer: binary step

• Not differentiable at 𝑥 = 0, has 0 derivative everywhere else.
• Not useful for gradient-based optimization methods.

Activation functions at hidden layer: some choices

Figure 11: Most common activation functions

What do they have in common?
• Differentiable (at least from one side)
• Non-linear (except for the linear one, which is only used as the output function for a regression)

9

http://neuralnetworksanddeeplearning.com/chap4.html

Neural network - summary
Things that are “given”

For a particular problem, these are “given”:
• the number of inputs
• the number of outputs
• the activation function to use at the output
• the loss function

Things that we decide

We still need to decide:
• the number of hidden units
• the activation function to use at hidden units

Training the network

• Still need to find the 𝐖 that minimizes 𝐿(𝐖).
• How?

10

Backpropagation
How to compute gradients?

• Gradient descent requires computation of the gradient ∇𝐿(𝐖)
• Backpropagation is key to efficient computation of gradients

We need to compute the gradient of the loss function with respect to every weight, and there are
𝑁𝐻(𝑁𝐼 + 1) + 𝑁𝑂(𝑁𝐻 + 1) weights!
Two perspectives on backpropagation:

• It’s just the chain rule
• It’s not just the chain rule

Re: “it’s not just the chain rule”, the key to efficient computation will be:
• saving all the intermediate (hidden) variables on the forward pass, to reuse in the computation of
gradients

• computing the gradients in a backwards pass - going from output to input, and accumulating local
derivatives along the path (you’ll see!)

Composite functions and computational graphs

Suppose we have a composite function 𝑓(𝑔(ℎ(𝑥)))
We can represent it as a computational graph, where each connection is an input and each node performs
a function or operation:

Figure 12: Composite function.

Forward pass on computational graph

To compute the output 𝑓(𝑔(ℎ(𝑥))), we do a forward pass on the computational graph:

• Compute 𝑣 = ℎ(𝑥)
• Compute 𝑢 = 𝑔(𝑣)
• Compute 𝑓(𝑢)

Figure 13: Forward pass.

Note that we accumulate results in the forward direction - at each node, we use the output of the previous
node, which depends on the output of all the previous nodes. But, we don’t need to repeat the steps of
all the previous nodes each time, since the output is “accumulated” forward.

11

Derivative of composite function

Suppose we need to compute the derivative of the composite function 𝑓(𝑔(ℎ(𝑥))) with respect to 𝑥.
We will use the chain rule:

𝑑𝑓
𝑑𝑥 = 𝑑𝑓

𝑑𝑢
𝑑𝑔
𝑑𝑣

𝑑ℎ
𝑑𝑥

Backward pass on computational graph

We can compute this chain rule derivative by doing a backward pass on the computational graph:

Figure 14: Backward pass.

As in the forward pass, in the backward pass, we do a “local” operation at each node: the “local” derivative
of each node with respect to its inputs (shown in rectangles on each edge).
As in the forward pass, we accumulate results, but now in the backward direction. At each node, the
derivative of the output with respect to the value computed at that node is:

• The product of all the “local” derivatives along the path between the node and the output.
• or equivalently, the product of the derivative at the previous node in the backward pass, and the
“local” derivative along the path from that node.

For example: when we compute 𝑑𝑓
𝑑𝑥 at the last “stop” along the backwards pass, we don’t need to compute

all the parts of 𝑑𝑓
𝑑𝑢

𝑑𝑔
𝑑𝑣

𝑑𝑢
𝑑𝑥 again. We just need:

• compute “local” gradient 𝑑ℎ
𝑑𝑥

• and multiply it by the “accumulated” gradient computed at the previous node, 𝑑𝑓
𝑑𝑣

This seems obvious… but when we apply it to a neural network, we will see why it is so important.

Neural network computational graph

Figure 15: Neural network as a computational graph.

What about when we have multiple inputs, multiple hidden units?

12

Backpropagation error: definition

Denote the backpropagation error of node 𝑗 as

𝛿𝑗 = 𝜕𝐿
𝜕𝑧𝑗

the derivative of the loss function, with respect to the input to the activation function at that node.
Spoiler: this 𝛿𝑗 is going to be the “accumulated” part of the derivative.

Output unit: backpropagation error (accumulated)

Generally, for output unit 𝑗:

𝛿𝑗 = 𝜕𝐿
𝜕𝑧𝑗

= 𝜕𝐿
𝜕𝑢𝑗

𝜕𝑢𝑗
𝜕𝑧𝑗

Figure 16: Computing backpropagation error at output unit.

For example, in a regression network:

𝐿 = 1
2 ∑

𝑛
(𝑦𝑛 − 𝑧𝑂,𝑛)2

Then 𝛿𝑂 = 𝜕𝐿
𝜕𝑧𝑂

= −(𝑦 − 𝑧𝑂).

13

Output unit: derivative vs input weights (local)

• At a node 𝑗, 𝑧𝑗 = ∑𝑖 𝑤𝑗,𝑖𝑢𝑖 = 𝑤𝑗,𝑖𝑢𝑖 + … (sum over inputs to the node)

• When taking 𝜕𝑧𝑗
𝜕𝑤𝑗,𝑖

the only term left is 𝑤𝑗,𝑖𝑢𝑖

• So 𝜕𝑧𝑗
𝜕𝑤𝑗,𝑖

= 𝑢𝑖

Figure 17: Computing gradient with respect to weight at output unit.

The derivative of the loss with respect to a weight 𝑤𝑗,𝑖 input to the node, 𝜕𝐿
𝜕𝑤𝑗,𝑖

, is the product of:

• 𝛿𝑗 = 𝜕𝐿
𝜕𝑧𝑗

(the “accumulated” part)

• 𝑢𝑖 = 𝜕𝑧𝑗
𝜕𝑤𝑗,𝑖

(the “local” part)

so finally, 𝜕𝐿
𝜕𝑤𝑗,𝑖

= 𝛿𝑗𝑢𝑖.

(We save the computations of all the 𝑢𝑖 values from the forward pass, so that we can reuse them for
backpropagation.)

14

Hidden unit: backpropagation error (accumulated)

Sum the accumulated gradient along output paths:

𝛿𝑗 = 𝜕𝐿
𝜕𝑧𝑗

= ∑
𝑘

𝜕𝐿
𝜕𝑧𝑘

𝜕𝑧𝑘
𝜕𝑧𝑗

= ∑
𝑘

𝛿𝑘
𝜕𝑧𝑘
𝜕𝑧𝑗

= ∑
𝑘

𝛿𝑘𝑤𝑘,𝑗𝑔′
𝑗(𝑧𝑗)

Figure 18: Computing backpropagation error at hidden unit.

Note: since we move from the output end of the network toward its input, we have already accumulated
𝛿𝑘 when we “visited” node 𝑘. So we the “new” computation is just 𝜕𝑧𝑘

𝜕𝑧𝑗
.

We compute the next “accumulated” gradient using the previous “accumulated” gradient and a “local”
derivative.
Since

𝑧𝑘 = ∑
𝑙

𝑤𝑘,𝑙𝑢𝑙

(sum over inputs to node 𝑘), but for the derivative with respect to 𝑧𝑗 the only term left is 𝑤𝑘,𝑗𝑢𝑗. So,

15

𝜕𝑧𝑘
𝜕𝑧𝑗

= 𝜕
𝜕𝑧𝑗

𝑤𝑘,𝑗𝑢𝑗

= 𝜕
𝜕𝑧𝑗

𝑤𝑘,𝑗𝑔𝑗(𝑧𝑗)

= 𝑤𝑘,𝑗𝑔′
𝑗(𝑧𝑗)

where 𝑔′
𝑗() is the derivative of the activation function. (We save 𝑧𝑗 from the forward pass, so we can

reuse it here to compute 𝑔′
𝑗(𝑧𝑗).)

Hidden unit: derivative vs input weights (local)

Same as output unit - 𝜕𝑧𝑗
𝜕𝑤𝑗,𝑖

= 𝑢𝑖

Figure 19: Computing gradient with respect to weight at hidden unit.

As at output unit, the derivative of the loss with respect to a weight 𝑤𝑗,𝑖 input to the node, 𝜕𝐿
𝜕𝑤𝑗,𝑖

, is the
product of:

• 𝛿𝑗 = 𝜕𝐿
𝜕𝑧𝑗

(the “accumulated” part)

• 𝑢𝑖 = 𝜕𝑧𝑗
𝜕𝑤𝑗,𝑖

(the “local” part)

so for a hidden unit, too, 𝜕𝐿
𝜕𝑤𝑗,𝑖

= 𝛿𝑗𝑢𝑖

16

Backpropagation + gradient descent algorithm (1)

1. Start with random (small) weights. Apply input 𝑥𝑛 to network and propagate values forward using
𝑧𝑗 = ∑𝑖 𝑤𝑗,𝑖𝑢𝑖 and 𝑢𝑗 = 𝑔(𝑧𝑗). (Sum is over all inputs to node 𝑗.)

2. Evaluate 𝛿𝑗 for all output units.

Backpropagation + gradient descent algorithm (2)

3. Backpropagate the 𝛿s to get 𝛿𝑗 for each hidden unit. (Sum is over all outputs of node 𝑗.)

𝛿𝑗 = 𝑔′(𝑧𝑗) ∑
𝑘

𝑤𝑘,𝑗𝛿𝑘

Backpropagation + gradient descent algorithm (3)

4. Use 𝜕𝐿𝑛
𝜕𝑤𝑗,𝑖

= 𝛿𝑗𝑢𝑖 to evaluate derivatives.
5. Update weights using gradient descent.

17

Why is backpropagation so important?
Example: 𝑒 = (𝑎 + 𝑏) × (𝑏 + 1)

Figure 20: Derivatives on a computational graph

Example via https://colah.github.io/posts/2015-08-Backprop/.

Forward-mode differentiation

Figure 21: Forward-mode differentiation.

With forward-mode differentiation, we take the derivative of the outupt with respect to one input (e.g. 𝑑𝑒
𝑑𝑏),

by starting at the input and “accumulating” the gradients toward the output.
However, if we want to take derivatives with respect to a different input (e.g. input 𝑎), these accumulated
gradients don’t help - we need to compute all of the derivatives again.

18

https://colah.github.io/posts/2015-08-Backprop

Reverse-mode differentiation

Figure 22: Reverse-mode differentiation.

With reverse mode differentiation, we take the derivative of the outupt with respect to one input (e.g. 𝑑𝑒
𝑑𝑏),

by starting at the output and “accumulating” the gradients toward the input.
If we want to take derivatives with respect to a different input (e.g. input 𝑎), we already have most of the
accumulated gradients - we would just need to compute one more local derivative near that input (𝑑𝑐

𝑑𝑎).

For a problem where you need derivative of one output (loss) with respect to many inputs (many weights),
reverse mode differentiation is very efficient because the accumulated gradients (𝛿 values) are computed
once and then reused many times.
So, it’s not just the chain rule:

• Forward-mode differentiation: complexity scales roughly with the size of the input.
• Reverse-mode differentiation: complexity scales roughly with the size of the output.

19

	In this lecture
	From linear to non-linear
	Representation as a computational graph
	Example: synthetic data
	Model of example two-stage network (1)
	Model of example two-stage network (2)
	Example: output of each hidden node
	Example: output of output node
	Matrix form of two stage network

	Neural networks
	Terminology
	Setting up a neural network - givens
	Binary classification…
	Multi-class classification…
	Regression with one output…
	Regression with multiple outputs…
	Setting up a neural network - decisions
	Dimension (1)
	Dimension (2)
	Activation functions at hidden layer: identity?
	Activation functions at hidden layer: binary step
	Activation functions at hidden layer: some choices

	Neural network - summary
	Things that are “given”
	Things that we decide
	Training the network

	Backpropagation
	How to compute gradients?
	Composite functions and computational graphs
	Forward pass on computational graph
	Derivative of composite function
	Backward pass on computational graph
	Neural network computational graph
	Backpropagation error: definition
	Output unit: backpropagation error (accumulated)
	Output unit: derivative vs input weights (local)
	Hidden unit: backpropagation error (accumulated)
	Hidden unit: derivative vs input weights (local)
	Backpropagation + gradient descent algorithm (1)
	Backpropagation + gradient descent algorithm (2)
	Backpropagation + gradient descent algorithm (3)

	Why is backpropagation so important?
	Forward-mode differentiation
	Reverse-mode differentiation

