Support vector machines with non-linear kernels

Fraida Fund

Contents

Kernel SVMS . . . . . L e e e e e e e e e e e e e e e e e e e e e
Review: Solution to SVM dual problem . . . . . . . . . . .. .. .. ... .
Extension to non-linear decision boundary . . . . ... ... ... . ... ... ...,
SVM with basis function transformation . . . . . .. . ... ... ... .. ...
Example (1) . . . . o e e e
Example (2) . . . . . e e e
Example (3) . . . o v e e e e
Example (4) . . . o . e e e e e e
Kerneltrick . . . . . . . o o e e e e e e e e e e
Kernel as a similarity measure . . . . . . . . . . . . e e e e e
Linear kernel . . . . . . . . e e e e e e e e e e e e e e e e
Polynomial kernel . . . . . . . . . e e e e

Using infinite-dimension featurespace . . . . . . . . . . . . . . i i e
Radial basis function kernel . . . . . . . . . . . . ...
Infinite-dimensional featurespace . . . . . . . . . . . . ...
Infinite-dimensional feature space (extra steps not showninclass) . . . . ... ... ...
Infinite-dimensional feature space (2) . . . . . . . . . e
Infinite-dimensional feature space (3) . . . . . . . . . e e
Feature mappingvs kernel . . . . . . . . . . e e e e
Kernel: not justfor SVM . . . . . . . . . e e e e

Summary: SVM . . L L e e e e e e e e e e e e e e e e e e e e e
Key BXPressSion . . . . o i v it e e e e e e e e e e e e e e e e e e e e
Keyideas . . . . . . . i i e e e e e e e e e

Math prerequisites for this lecture: You should know about complexity of algorithms (Big O notation).



Kernel SVMs
Review: Solution to SVM dual problem

Given a set of support vectors S and associated « for each,
z=wy+ Z Y (X, Xy)
iesS
y = sign(z)
Measures inner product (a kind of “correlation”) between new sample and each support vector.

For the geometric intuition/why inner product measures the similarity between two vectors, watch:
3Blue1Brown series S1 E9: Dot products and duality.

This SVM assumes a linear decision boundary. (The expression for z gives the equation of the hyperplane
that separates the classes.)

Extension to non-linear decision boundary

- For logistic regression: we used basis functions of x to transform the feature space and classify
data with non-linear decision boundary.
« Could use similar approach here?

SVM with basis function transformation

Given a set of support vectors .S and associated « for each,

z=wy+ Z oy, (P(x;), (%))

€S
y = sign(z)
Note: the output of ¢(X) is a vector that may or may not have the same dimensions as X.
Example (1)
Suppose we are given a dataset of feature-label pairs in R:
(—1,—-1),(0,—1),(1,—1),(=3,+1),(—2,4+1),(3,+1)
This data is not linearly separable.

Example (2)

Now suppose we map from R! to R? using ¢(z) = (x, 22):

((_17 1) _ 1)7 (<07 0)7 _1>> ((17 1)7 _1)7
((—=3,9)+1),((—2,4) +1),((3,9) + 1)

This data is linearly separable in R2.


https://www.youtube.com/watch?v=LyGKycYT2v0

Example (3)
Suppose we compute (¢(x;), d(z,)) directly:

- compute ¢(x;)

- compute ¢(x;)
- take inner product

How many operations (exponentiation, multiplication, division, addition, subtraction) are needed?

For each computation of (¢(z;), ¢(x,)), we need five operations:

- (one square) find ¢(z;) = (x;, 1?)
- (one square) find ¢(,) = (x;, 27)

+ (two multiplications, one sum) find (¢(x;), ¢(x,)) = z;2, + z2x?)

Example (&)
What if we express (¢(z;), p(x,)) as

K(z;2,) = z;2,(1 + 2;2,)
How many operations (exponentiation, multiplication, division, addition, subtraction) are needed to com-
pute this equivalent expression?
Each computation of K (x;, x,) requires three operations:

- (one multiplication) compute x,;z,)
- (one sum) compute 1 4 x;x,
- (one multiplication) compute z;z,(1 + x,x,)

Kernel trick

- Suppose kernel K (x;,x,) computes inner product in transformed feature space (¢(x; ), d(x,))
* For the SVM:

zZ=wy+ Z oy K (%, %)
€S

- We don't need to explicitly compute ¢(x) if computing K (x;,x,) is more efficient

Note that the expression we use to find the «; values also only depends on the inner product, so the
kernel works there as well.



Another example:
K(z,2) = (272 + c)?
= Z(%%)(zz%) + Z(\/%xz)(\/%%) +c?
i\ i

corresponds to the feature mapping:

T1Tq
1Ty
Ty
¢(x) = TyTy
V2cx,
LV 2cz, ]

More generally: K (z,z) = (272 + ¢)? is the polynomial kernel of degreee d. If each sample has p

features, it corresponds to a feature mapping to an (pzd) feature space. Although it works in O(pd)

feature space, computing the kernel is just an inner product which is O(p).

Kernel as a similarity measure
- K(x;,x,) measures “similarity” between training sample x, and new sample X,
+ Large K, more similarity; K close to zero, not much similarity

N . . .
sz = wy+ Y., oy, K(x;,%X,) gives more weight to support vectors that are similar to new
sample - those support vectors’ labels “count” more toward the label of the new sample.



Linear kernel

Polynomial kernel

Figure 2: Polynomial kernel: K (x;, ;) = (yxlz, + ¢)?



Using infinite-dimension feature space

Radial basis function kernel

Figure 3: Radial basis function: K (z;,z,) = exp(—7||z; — z4|[?). If ¥ = 5, this is known as the

Gaussian kernel with variance 2.

Infinite-dimensional feature space

With kernel method, can operate in infinite-dimensional feature space! Take for example the RBF kernel:

Ko (0, %,) = exp (=71, — x,J12)

lety = 1andlet K

5 pory(r) D€ the polynomial kernel of degree 7. Then

Infinite-dimensional feature space (extra steps not shown in class)
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where the steps marked with a star use the fact that for inner products, (u+v, w) = (u, w) + (v, w).

Also recall that (z, z) =||z|>.



Infinite-dimensional feature space (2)

(k0 %) = e bl

Eventually, K e alxel? o(xi,x,)

RBF
Let C' = exp ( — %”Xsz) exp ( — %th”2)

And note that the Taylor expansion of ef () js:

of(@) — i [f(fcl‘)]r

r=0

C'is a constant - it can be computed in advance for every x individually.

Infinite-dimensional feature space (3)

Finally, the RBF kernel can be viewed as an infinite sum over polynomial kernels:

K,

RBF(Xi7 Xt) = C€<xi7xt>

_ - <Xiaxt>r
B CZO 7!

G Kpoly(r) <Xi7 Xt)

:CZ 7!

T

Feature mapping vs kernel

« First approach: basis function transformation AKA feature mapping
« Current approach: kernel - work in transformed space without explicit transformation
+ Next lesson: wait and see!

A basis function transformation can be expensive if the dimensionality of the transformed feature space
is large. With a kernel approach, we can work very efficiently in high dimensional feature space.

Kernel: not just for SYM

Kernels are used in other types of models -

« Kernel regression
+ Gaussian process regression



Summary: SVM
Key expression

Decision boundary can be computed using an inexpensive kernel function on a small number of support
vectors:

z=wy+ Z oy K (%, %)
€S

(z € S are the subset of training samples that are support vectors)

Key ideas

« Boundary with max separation between classes
« Tuning hyperparameters controls complexity
- ( for width of margin/number of support vectors
- also kernel-specific hyperparameters
« Kernel trick allows efficient extension to higher-dimension space: non-linear decision boundary
through transformation of features, but without explicitly computing high-dimensional features.
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