Support vector machines with non-linear kernels

Fraida Fund

Contents

Kernel SVMs
Review: Solution to SVM dual problem
Extension to non-linear decision boundary
SVM with basis function transformation
Example (1)
Example (2)
Example (3)
Example (4)
Kernel trick
Kernel as a similarity measure
Linear kernel
Polynomial kernel
Using infinite-dimension feature space
Radial basis function kernel
Infinite-dimensional feature space
Infinite-dimensional feature space (extra steps not shown in class)
Infinite-dimensional feature space (2)
Infinite-dimensional feature space (3)
Feature mapping vs kernel
Kernel: not just for SVM
Summary: SVM
Key expression
Key ideas

Math prerequisites for this lecture: You should know about complexity of algorithms (Big O notation).

Kernel SVMs

Review: Solution to SVM dual problem

Given a set of support vectors S and associated α for each,

$$z = w_0 + \sum_{i \in S} \alpha_i y_i \langle \mathbf{x}_i, \mathbf{x}_t \rangle$$

$$\hat{y} = \mathrm{sign}(z)$$

Measures inner product (a kind of "correlation") between new sample and each support vector.

For the geometric intuition/why inner product measures the similarity between two vectors, watch: 3Blue1Brown series S1 E9: Dot products and duality.

This SVM assumes a linear decision boundary. (The expression for z gives the equation of the hyperplane that separates the classes.)

Extension to non-linear decision boundary

- For logistic regression: we used basis functions of ${\bf x}$ to transform the feature space and classify data with non-linear decision boundary.
- · Could use similar approach here?

SVM with basis function transformation

Given a set of support vectors S and associated α for each,

$$\begin{split} z &= w_0 + \sum_{i \in S} \alpha_i y_i \langle \pmb{\phi}(\mathbf{x}_i), \pmb{\phi}(\mathbf{x}_t) \rangle \\ \hat{y} &= \mathrm{sign}(z) \end{split}$$

Note: the output of $\phi(x)$ is a vector that may or may not have the same dimensions as x.

Example (1)

Suppose we are given a dataset of feature-label pairs in \mathbb{R}^1 :

$$(-1,-1), (0,-1), (1,-1), (-3,+1), (-2,+1), (3,+1) \\$$

This data is not linearly separable.

Example (2)

Now suppose we map from \mathbb{R}^1 to \mathbb{R}^2 using $\phi(x)=(x,x^2)$:

$$((-1,1)-1), ((0,0),-1), ((1,1),-1),$$

 $((-3,9)+1), ((-2,4)+1), ((3,9)+1)$

This data is linearly separable in \mathbb{R}^2 .

Example (3)

Suppose we compute $\langle \phi(x_i), \phi(x_t) \rangle$ directly:

- compute $\phi(x_i)$
- compute $\phi(x_t)$
- take inner product

How many operations (exponentiation, multiplication, division, addition, subtraction) are needed? For each computation of $\langle \phi(x_i), \phi(x_t) \rangle$, we need five operations:

- (one square) find $\phi(x_i)=(x_i,x_i^2)$ (one square) find $\phi(x_t)=(x_t,x_t^2)$
- (two multiplications, one sum) find $\langle \phi(x_i), \phi(x_t) \rangle = x_i x_t + x_i^2 x_t^2)$

Example (4)

What if we express $\langle \phi(x_i), \phi(x_t) \rangle$ as

$$K(x_i, x_t) = x_i x_t (1 + x_i x_t)$$

How many operations (exponentiation, multiplication, division, addition, subtraction) are needed to compute this equivalent expression?

Each computation of $K(x_i, x_t)$ requires three operations:

- (one multiplication) compute $x_i x_t$)
- (one sum) compute $1 + x_i x_t$
- (one multiplication) compute $x_i x_t (1 + x_i x_t)$

Kernel trick

- Suppose kernel $K(\mathbf{x}_i, \mathbf{x}_t)$ computes inner product in transformed feature space $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_t) \rangle$
- · For the SVM:

$$z = w_0 + \sum_{i \in S} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_t)$$

• We don't need to explicitly compute $\phi(\mathbf{x})$ if computing $K(\mathbf{x}_i,\mathbf{x}_t)$ is more efficient

Note that the expression we use to find the $lpha_i$ values also only depends on the inner product, so the kernel works there as well.

Another example:

$$\begin{split} K(x,z) &= (x^Tz + c)^2 \\ &= \sum_{i,j}^n (x_ix_j)(z_iz_j) + \sum_i^n (\sqrt{2c}x_i)(\sqrt{2c}x_i) + c^2 \end{split}$$

corresponds to the feature mapping:

$$\phi(x) = \begin{bmatrix} x_1 x_1 \\ x_1 x_2 \\ x_2 x_1 \\ x_2 x_2 \\ \sqrt{2c} x_1 \\ \sqrt{2c} x_2 \end{bmatrix}$$

More generally: $K(x,z)=(x^Tz+c)^d$ is the polynomial kernel of degreee d. If each sample has pfeatures, it corresponds to a feature mapping to an $\binom{p+d}{d}$ feature space. Although it works in $O(p^d)$ feature space, computing the kernel is just an inner product which is O(p).

Kernel as a similarity measure

- $K(\mathbf{x}_i, \mathbf{x}_t)$ measures "similarity" between training sample \mathbf{x}_i and new sample \mathbf{x}_t Large K, more similarity; K close to zero, not much similarity
- $z=w_0+\sum_{i=1}^N \alpha_i y_i K(\mathbf{x}_i,\mathbf{x}_t)$ gives more weight to support vectors that are similar to new sample those support vectors' labels "count" more toward the label of the new sample.

Linear kernel

Figure 1: Linear kernel: $K(\boldsymbol{x}_i, \boldsymbol{x}_t) = \boldsymbol{x}_i^T \boldsymbol{x}_t$

Polynomial kernel

Figure 2: Polynomial kernel: $K(x_i, x_t) = (\gamma x_i^T x_t + c_0)^d$

Using infinite-dimension feature space

Radial basis function kernel

Figure 3: Radial basis function: $K(x_i,x_t)=\exp(-\gamma||x_i-x_t||^2)$. If $\gamma=\frac{1}{\sigma^2}$, this is known as the Gaussian kernel with variance σ^2 .

Infinite-dimensional feature space

With kernel method, can operate in infinite-dimensional feature space! Take for example the RBF kernel:

$$K_{\text{RBF}}(\mathbf{x}_i, \mathbf{x}_t) = \exp \Big(- \gamma \|\mathbf{x}_i - \mathbf{x}_t\|^2 \Big)$$

Let $\gamma=\frac{1}{2}$ and let $K_{\mathtt{poly}(r)}$ be the polynomial kernel of degree r. Then

Infinite-dimensional feature space (extra steps not shown in class)

$$\begin{split} K_{\text{RBF}}(\mathbf{x}_i, \mathbf{x}_t) &= \exp \Big(-\frac{1}{2} \| \mathbf{x}_i - \mathbf{x}_t \|^2 \Big) \\ &= \exp \Big(-\frac{1}{2} \langle \mathbf{x}_i - \mathbf{x}_t, \mathbf{x}_i - \mathbf{x}_t \rangle \Big) \\ &\stackrel{\star}{=} \exp \Big(-\frac{1}{2} (\langle \mathbf{x}_i, \mathbf{x}_i - \mathbf{x}_t \rangle - \langle \mathbf{x}_t, \mathbf{x}_i - \mathbf{x}_t \rangle) \Big) \\ &\stackrel{\star}{=} \exp \Big(-\frac{1}{2} (\langle \mathbf{x}_i, \mathbf{x}_i \rangle - \langle \mathbf{x}_i, \mathbf{x}_t \rangle - [\langle \mathbf{x}_t, \mathbf{x}_i \rangle - \langle \mathbf{x}_t, \mathbf{x}_t \rangle] \rangle) \Big) \\ &= \exp \Big(-\frac{1}{2} (\langle \mathbf{x}_i, \mathbf{x}_i \rangle + \langle \mathbf{x}_t, \mathbf{x}_t \rangle - 2 \langle \mathbf{x}_i, \mathbf{x}_t \rangle) \Big) \\ &= \exp \Big(-\frac{1}{2} \| \mathbf{x}_i \|^2 \Big) \exp \Big(-\frac{1}{2} \| \mathbf{x}_t \|^2 \Big) \exp \Big(\langle \mathbf{x}_i, \mathbf{x}_t \rangle \Big) \end{split}$$

where the steps marked with a star use the fact that for inner products, $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$. Also recall that $\langle x, x \rangle = \|x\|^2$.

Infinite-dimensional feature space (2)

Eventually,
$$K_{\text{RBF}}(\mathbf{x}_i,\mathbf{x}_t) = e^{-\frac{1}{2}\|\mathbf{x}_i\|^2}e^{-\frac{1}{2}\|\mathbf{x}_t\|^2}e^{\langle \mathbf{x}_i,\mathbf{x}_t \rangle}$$
 Let $C \equiv \exp\left(-\frac{1}{2}\|\mathbf{x}_i\|^2\right)\exp\left(-\frac{1}{2}\|\mathbf{x}_t\|^2\right)$

And note that the Taylor expansion of $e^{f(x)}$ is:

$$e^{f(x)} = \sum_{r=0}^{\infty} \frac{[f(x)]^r}{r!}$$

 ${\cal C}$ is a constant - it can be computed in advance for every x individually.

Infinite-dimensional feature space (3)

Finally, the RBF kernel can be viewed as an infinite sum over polynomial kernels:

$$\begin{split} K_{\text{RBF}}(\mathbf{x}_i, \mathbf{x}_t) &= C e^{\langle \mathbf{x}_i, \mathbf{x}_t \rangle} \\ &= C \sum_{r=0}^{\infty} \frac{\langle \mathbf{x}_i, \mathbf{x}_t \rangle^r}{r!} \\ &= C \sum_{r=0}^{\infty} \frac{K_{\text{poly(r)}}(\mathbf{x}_i, \mathbf{x}_t)}{r!} \end{split}$$

Feature mapping vs kernel

- First approach: basis function transformation AKA feature mapping
- Current approach: kernel work in transformed space without explicit transformation
- Next lesson: wait and see!

A basis function transformation can be expensive if the dimensionality of the transformed feature space is large. With a kernel approach, we can work very efficiently in high dimensional feature space.

Kernel: not just for SVM

Kernels are used in other types of models -

- · Kernel regression
- · Gaussian process regression

Summary: SVM

Key expression

Decision boundary can be computed using an inexpensive kernel function on a small number of support vectors:

$$z = w_0 + \sum_{i \in S} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_t)$$

 $(i \in S \text{ are the subset of training samples that are support vectors})$

Key ideas

- Boundary with max separation between classes
- Tuning hyperparameters controls complexity
 - $-\breve{C}$ for width of margin/number of support vectors
 - also kernel-specific hyperparameters
- Kernel trick allows efficient extension to higher-dimension space: non-linear decision boundary through transformation of features, but without explicitly computing high-dimensional features.