Support vector machines with non-linear kernels

Fraida Fund

Contents

Kernel SVMS L e
Review: Solution to SVM dual problem
Extension to non-linear decision boundary,
SVM with basis function transformation
Example (1) o e e e
Example (2) e e e
Example (3) . . . o v e e e e
Example (4) . . . o . e e e e e e
Kerneltrick o o e e e e e e e e e e
Kernel as a similarity measure e e e e e
Linear kernel e e e e e e e e e e e e e e e e
Polynomial kernel e e e e

Using infinite-dimension featurespace i i e
Radial basis function kernel
Infinite-dimensional featurespace
Infinite-dimensional feature space (extra steps not showninclass)
Infinite-dimensional feature space (2) e
Infinite-dimensional feature space (3) e e
Feature mappingvs kernel e e e e
Kernel: not justfor SVM e e e e

Summary: SVM . . L L e
Key BXPressSion o i v it e
Keyideas i i e e e e e e e e e

Math prerequisites for this lecture: You should know about complexity of algorithms (Big O notation).

Kernel SVMs
Review: Solution to SVM dual problem

Given a set of support vectors S and associated « for each,
z=wy+ Z Y (X, Xy)
iesS
y = sign(z)
Measures inner product (a kind of “correlation”) between new sample and each support vector.

For the geometric intuition/why inner product measures the similarity between two vectors, watch:
3Blue1Brown series S1 E9: Dot products and duality.

This SVM assumes a linear decision boundary. (The expression for z gives the equation of the hyperplane
that separates the classes.)

Extension to non-linear decision boundary

- For logistic regression: we used basis functions of x to transform the feature space and classify
data with non-linear decision boundary.
« Could use similar approach here?

SVM with basis function transformation

Given a set of support vectors .S and associated « for each,

z=wy+ Z oy, (P(x;), (%))

€S
y = sign(z)
Note: the output of ¢(X) is a vector that may or may not have the same dimensions as X.
Example (1)
Suppose we are given a dataset of feature-label pairs in R:
(—1,—-1),(0,—1),(1,—1),(=3,+1),(—2,4+1),(3,+1)
This data is not linearly separable.

Example (2)

Now suppose we map from R! to R? using ¢(z) = (x, 22):

((_17 1) _ 1)7 (<07 0)7 _1>> ((17 1)7 _1)7
((—=3,9)+1),((—2,4) +1),((3,9) + 1)

This data is linearly separable in R2.

https://www.youtube.com/watch?v=LyGKycYT2v0

Example (3)
Suppose we compute (¢(x;), d(z,)) directly:

- compute ¢(x;)

- compute ¢(x;)
- take inner product

How many operations (exponentiation, multiplication, division, addition, subtraction) are needed?

For each computation of (¢(z;), ¢(x,)), we need five operations:

- (one square) find ¢(z;) = (x;, 1?)
- (one square) find ¢(,) = (x;, 27)

+ (two multiplications, one sum) find (¢(x;), ¢(x,)) = z;2, + z2x?)

Example (&)
What if we express (¢(z;), p(x,)) as

K(z;2,) = z;2,(1 + 2;2,)
How many operations (exponentiation, multiplication, division, addition, subtraction) are needed to com-
pute this equivalent expression?
Each computation of K (x;, x,) requires three operations:

- (one multiplication) compute x,;z,)
- (one sum) compute 1 4 x;x,
- (one multiplication) compute z;z,(1 + x,x,)

Kernel trick

- Suppose kernel K (x;,x,) computes inner product in transformed feature space (¢(x;), d(x,))
* For the SVM:

zZ=wy+ Z oy K (%, %)
€S

- We don't need to explicitly compute ¢(x) if computing K (x;,x,) is more efficient

Note that the expression we use to find the «; values also only depends on the inner product, so the
kernel works there as well.

Another example:
K(z,2) = (272 + c)?
= Z(%%)(zz%) + Z(\/%xz)(\/%%) +c?
i\ i

corresponds to the feature mapping:

T1Tq
1Ty
Ty
¢(x) = TyTy
V2cx,
LV 2cz,]

More generally: K (z,z) = (272 + ¢)? is the polynomial kernel of degreee d. If each sample has p

features, it corresponds to a feature mapping to an (pzd) feature space. Although it works in O(pd)

feature space, computing the kernel is just an inner product which is O(p).

Kernel as a similarity measure
- K(x;,x,) measures “similarity” between training sample x, and new sample X,
+ Large K, more similarity; K close to zero, not much similarity

N . . .
sz = wy+ Y., oy, K(x;,%X,) gives more weight to support vectors that are similar to new
sample - those support vectors’ labels “count” more toward the label of the new sample.

Linear kernel

Polynomial kernel

Figure 2: Polynomial kernel: K (x;, ;) = (yxlz, + ¢)?

Using infinite-dimension feature space

Radial basis function kernel

Figure 3: Radial basis function: K (z;,z,) = exp(—7||z; — z4|[?). If ¥ = 5, this is known as the

Gaussian kernel with variance 2.

Infinite-dimensional feature space

With kernel method, can operate in infinite-dimensional feature space! Take for example the RBF kernel:

Ko (0, %,) = exp (=71, — x,J12)

lety = 1andlet K

5 pory(r) D€ the polynomial kernel of degree 7. Then

Infinite-dimensional feature space (extra steps not shown in class)

KRBF<Xi7 Xt) =

]
x
©

I
]
x

©

[+
©
X

©

I+

(i23%:) = {35,%,) = [(,,33) = (2, %)))
(00 %,) + (%,%,) = 2(x;,%,)))

Il exp (— 5 12) exo ((x,))

o

x
©
-~

I
]
x

©

TN TN N N N N
RO I O N IS NG IS NN IS NG N S NG RS

I
o
x

©

where the steps marked with a star use the fact that for inner products, (u+v, w) = (u, w) + (v, w).

Also recall that (z, z) =||z|>.

Infinite-dimensional feature space (2)

(k0 %) = e bl

Eventually, K e alxel? o(xi,x,)

RBF
Let C' = exp (— %”Xsz) exp (— %th”2)

And note that the Taylor expansion of ef () js:

of(@) — i [f(fcl‘)]r

r=0

C'is a constant - it can be computed in advance for every x individually.

Infinite-dimensional feature space (3)

Finally, the RBF kernel can be viewed as an infinite sum over polynomial kernels:

K,

RBF(Xi7 Xt) = C€<xi7xt>

_ - <Xiaxt>r
B CZO 7!

G Kpoly(r) <Xi7 Xt)

:CZ 7!

T

Feature mapping vs kernel

« First approach: basis function transformation AKA feature mapping
« Current approach: kernel - work in transformed space without explicit transformation
+ Next lesson: wait and see!

A basis function transformation can be expensive if the dimensionality of the transformed feature space
is large. With a kernel approach, we can work very efficiently in high dimensional feature space.

Kernel: not just for SYM

Kernels are used in other types of models -

« Kernel regression
+ Gaussian process regression

Summary: SVM
Key expression

Decision boundary can be computed using an inexpensive kernel function on a small number of support
vectors:

z=wy+ Z oy K (%, %)
€S

(z € S are the subset of training samples that are support vectors)

Key ideas

« Boundary with max separation between classes
« Tuning hyperparameters controls complexity
- (for width of margin/number of support vectors
- also kernel-specific hyperparameters
« Kernel trick allows efficient extension to higher-dimension space: non-linear decision boundary
through transformation of features, but without explicitly computing high-dimensional features.

	Kernel SVMs
	Review: Solution to SVM dual problem
	Extension to non-linear decision boundary
	SVM with basis function transformation
	Example (1)
	Example (2)
	Example (3)
	Example (4)
	Kernel trick
	Kernel as a similarity measure
	Linear kernel
	Polynomial kernel

	Using infinite-dimension feature space
	Radial basis function kernel
	Infinite-dimensional feature space
	Infinite-dimensional feature space (extra steps not shown in class)
	Infinite-dimensional feature space (2)
	Infinite-dimensional feature space (3)
	Feature mapping vs kernel
	Kernel: not just for SVM

	Summary: SVM
	Key expression
	Key ideas

