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In this lecture

» Deep neural networks
« Challenges and tricks

Math prerequisites for this lesson: None.

Recap

Last week: neural networks with one hidden layer

- Hidden layer learns feature representation
+ Output layer learns classification/regression tasks

With the neural network, the “transformed” feature representation is learned instead of specified by the
designer.
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Figure 1: Image is based on a figure in Deep learning, by Goodfellow, Bengio, Courville.

A neural network with non-linear activation, with one hidden layer and many units in it can approximate
virtually any continuous real-valued function, with the right weights. (Refer to the Universal Approxima-
tion Theorem.) But (1) it may need a very large number of units to represent the function, and (2) those
weights might not be learned by gradient descent - the loss surface is very unfriendly.

Instead of a single hidden layer, if we use multiple hidden layers they can “compose” functions learned
by the previous layers into more complex functions - use fewer units, and tends to learn better weights .



Deep neural networks

Figure 2: Illustration of a deep network, with multiple hidden layers.

Some comments:

- each layer is fully connected to the next layer
« each unit still works the same way: take the weighted sum of inputs, apply an activation function,

and that’s the unit output
- still trained by backpropagation

We call the number of layers the “depth” of the network and the number of hidden units in a layer its
“width.”

Challenges with deep neural networks

« Efficient learning
 Generalization

Loss landscape

Figure 3: “Loss landscape” of a deep neural network in a “slice” of the high-dimensional feature space.
Image source: Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer and Tom Goldstein. Visualizing the Loss
Landscape of Neural Nets. NIPS, 2018.

Neural networks are optimized using backpropagation over the computational graph, where the loss is a
very challenging function of all the weights. (Not convex!)



Double descent curve
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Figure 4: Double descent curve (left) and realization in a real neural network (right).

Interpolation threshold: where the model is just big enough to fit the training data exactly.

+ too-small models: can't represent the “true” function well

- too-big models (before interpolation threshold): memorizes the input, doesn’t generalize well to
unseen data (very sensitive to noise)

« REALLY big models: many possible weights that memorize the input, but SGD finds weight combina-
tion that memorizes the input and does well on unseen data

Double descent: animation
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Figure 5: Polynomial model before and after the interpolation threshold. Image source: Boaz Barak, click
link to see animation.

Explanation (via Boaz Barak):

When d of the model is less than d, of the polynomial, we are “under-fitting” and will not
get good performance. As d increases between d, and n, we fit more and more of the noise,
until for d = n we have a perfect interpolating polynomial that will have perfect training but
very poor test performance. When d grows beyond 7, more than one polynomial can fit the
data, and (under certain conditions) SGD will select the minimal norm one, which will make
the interpolation smoother and smoother and actually result in better performance.

What this means: in practice, we let the network get big (have capacity to learn complicated data repre-
sentations!) and use other methods to help select a “good” set of weights from all these candidates.
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Addressing the challenges

- Efficient learning
+ Generalization

In deep learning, we don’t want to use “smaller” (simpler) models, which won’t be as capable of learning
good feature representations. Instead, lots of work around (1) finding good weights quickly, and (2) finding
weights that will generalize.

Get more data

Data augmentation
Use related data
Use unlabeled data

Dataset

Activation functions
Weight initialization
Convolutional units

Architecture/setup

Recurrent units

Finding a "better" optimum

Input standardization
Batch normalization

Normalization

Adaptive learning rates
Gradient clipping

Gradient descent

L2 or L1 regularization
Regularization Early stopping
Dropout

Figure 6: Image credit: Sebastian Raschka

Dataset

« Get more data

+ Data augmentation

- Use related data (transfer learning)

+ Use unlabeled data (self-supervised, semi-supervised)

We won't talk much about getting more data, but if it's possible to get more labeled data, it is almost
always the most helpful thing you can do!

« Example: JFT-300M, a Google internal dataset for training image models, has 300M images
« Example: GTP-3 trained on 45TB of compressed plaintext, about 570GB after filtering

Reference: Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. Chen Sun, Abhinav Shri-
vastava, Saurabh Singh, Abhinav Gupta; Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 843-852.

It's not always possible to get a lot of labeled data for training a supervised learning model. But some-
times we can use unlabeled data, which is much easier to get. For example:

« Inself-supervised learning, the label can be inferred automatically from the unlabeled data. e.g. GPT
is trained to predict “next word”.

+ Insemi-supervised/weakly-supervised learning learining, we generate labels (probably imperfectly)
for unlabeled data (maybe using a smaller volume of labeled data to train a model!)

These are mostly out of scope of this course. But we will talk about data augmentation and transfer
learning...



Data augmentation

Figure 7: Data augmentation on a cat image.

It doesn't restrict network capacity - but it helps generalization by increasing the size of your training set!

- For image data: apply rotation, crops, scales, change contrast, brightness, color.
« For text you can replace words with synonyms, simulate typos.
« For audio you can adjust pitch or speed, add background noise etc.

Transfer learning

Idea: leverage model trained on related data.

Using pre-trained networks

« State-of-the-art networks involve millions of parameters, huge datasets, and days of training on
GPU clusters

- Idea: share pre-trained networks (network architecture and weights)

« Some famous networks for image classification: Inception, ResNet, and more

« Can be loaded directly in Keras

Transfer learning from pre-trained networks

Use pre-trained network for a different task

« Use early layers from pre-trained network, freeze their parameters
* Only train small number of parameters at the end

Base model is a powerful feature extractor (learns transformation into a more useful feature space), then
you just have to train for the mapping from this feature space to the target variable.

In practice: when applying deep learning, we almost always use a pre-trained base model! It saves time,
energy, and cost.

Example: To pre-train the 7B parameter (smallest) Llama 2, Meta’s open source language model, takes
184,320 GPU hours (21 GPU YEARS!) and anywhere from $100,000-800,000 (depending on cost of GPU in-
stance).



Transfer learning illustration (1)
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Figure 8: When the network is trained on a very similar task, even the abstract high-level features are
probably very relevant, so you might tune just the classification head.

Transfer learning illustration (2)

Freeze first |m/er~s: Classifier trained on ‘cats vs. Jogs"

Figure 9: If the original network is not as relevant, may fine-tune more layers.



Architecture/setup
- Activation functions
« Weight initialization
« Convolutional units

 Recurrent units
* ... many more ideas

Again, this is mostly out of scope of this course, but we’'ll talk about the first three items very briefly.

Recall: activation functions

Hyper Tangent Function RelU Function
tanh(z) max (0, z)
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Sigmoid Function Identity Function
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Figure 10: Candidate activation functions for a neural network.

Sigmoid: vanishing gradient (1)

N

Figure 11: Computing gradients by backpropagation. At a hidden unit, §; = g'(2;) Zk wy, 0y

Suppose we want to compute the gradient of the loss with respect to the weight shown in pink.

« We will multiply local gradients (pink) all along each path between weight and loss function, starting
from the end and moving toward the input.

« Then we add up the products of all the paths.

- With o activation, gradient along each path includes the product of a LOT of ¢’ terms.



Sigmoid: vanishing gradient (2)

1 oCx) 0'G) = 0G1-0C))
0.5
0.5
0.25
o) j/LJ
x x

Figure 12: Sigmoid function and its derivative.

What happens when you are in the far left or far right part of the sigmoid?

« Gradient is close to zero

+ Weight updates are also close to zero

« The “downstream” gradients will also be values close to zero! (Because of backpropagation.)
« And, when you multiply quantities close to zero - they get even smaller.

The network “learns fastest” when the gradient is large. When the sigmoid “saturates”, it “kills” the neuron!

Even the maximum value of the gradient is only 0.25 - so the gradient is always less than 1, and we know
what happens if you multiply many quantities less than 1...

(tanh is slightly better - gradient has a larger max + some other advantages - still has vanishing gradient.)

ReLU: Dead RelU
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Figure 13: ReLU function and its derivative.

ReLU is a much better non-linear function:

« does not saturate in positive region
- very very fast to compute

But, can “die” in the negative region. Once we end up there (e.g. by learning negative bias weight) we
cannot recover - since gradient is also zero, gradient descent will not update the weights.

(RelLU is also more subject to “exploding” gradient than sigmoid/tanh.)



ReLU: Leaky RelLU

Leaky RelU Derivative of Leaky RelU
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Figure 14: Leaky ReLU function and its derivative.
When input is less than 0, the ReLU (and downstream units) is completely dead (not only very small!)
Alternative: leaky ReLU has small (non-zero) gradient in the negative region - can recover.
f(z) = max(ax, )

(v is a hyperparameter.)
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Figure 15: Other activations. Image via Sefik Ilkin Serengil.
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Weight initialization

Figure 16: One path in forward pass on a neural network.

What if we initialize weights to:
- zero? If weights are all initialized to zero, all the outputs are zero (for any input) - won't learn.
- a constant (non-zero)? If weights are all initialized to the same constant, we are more prone to
“herding” - hidden units all move in the same direction at once, instead of “specializing”.
- anormalrandom value with small ? Small normal random values work well for “shallow” networks,
but not for deep networks - it makes the outputs “collapse” toward zero at later layers.
+ a normal random value with large 0? Large normal random values are bad - it makes the outputs

“explode” at later layers.

Weight initialization - normal
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Figure 17: Initial weights and ReLU unit outputs for each layer in a network.
« top row: too-small initial weights, by the last layer the outputs “collapse” toward zero

« middle row: good initial weights, distribution is similar from input to output
« bottom row: too-large initial weights, by the last layer the outputs “explode”
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Desirable properties for initial weights - principle

« The mean of the intial weights should be around 0
« The variance of the activations should stay the same across every layer

If you are interested, here’s a derivation.

Desirable properties for initial weights - practice

« For tanh: Xavier scales by \/]i,—

+ For ReLU: He by W%fi

N;,, is the number of inputs to the layer (“fan-in”).

Weight initialization - He
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Figure 18: Initial weights and ReLU unit outpus for each layer in a network, He initialization. In this
example, the size of the layers is: 100, 150, 200, 250, 300.
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https://www.deeplearning.ai/ai-notes/initialization/index.html

Normalization

« Input standardization
+ Batch normalization

Data pre-processing

You can make the loss surface much “nicer” by pre-processing:

« Remove mean (zero center)
+ Normalize (divide by standard deviation)
- OR decorrelation (whitening/rotation)

There are several reasons why this helps. We already discussed the “ravine” in the loss function that is
created by correlated features.

Data preprocessing (1)

original data zero-centered data normalized data

Figure 19: Image source: Stanford CS231n.

Data preprocessing (2)

original data decorrelated data whitened data

Figure 20: Image source: Stanford CS231n.

Input standardization helps with the first hidden layer, but what about the hidden layers?

Batch normalization

 Re-center and re-scale between layers
« Training: Mean and standard deviation per training mini-batch
« Test: Using fixed statistics

Gradient descent

13



Regularization

* L2 or L1 regularization
« Early stopping
» Dropout

L1 or L2 regularization

As with other models, we can add a penalty on the norm of the weights.

Normal gradient descent update rule:

oL

t+1 t
W =W — «
Z’] Z7-] t
8wi’j
With L2 regularization:
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w; —wi’j—a( wi )

- + N

t 2¥]
ow;; n
Often called “weight decay” in the context of neural nets.

Early stopping

+ Compute validation loss each performance
« Stop training when validation loss hasn’t improved in a while
« Risk of stopping too early

Important: must divide data into training, validation, and test data - use validation data (not test data!)
to decide when to stop training.

Dropout

(a) Standard Neural Net (b) After applying dropout.
Figure 21: Dropout networks.

« During each training step: some portion of neurons are randomly “dropped”.
« During each test step: don't “drop” any neurons, but we need to scale activations by dropout prob-
ability

Why does it work? Some ideas:

+ Forces some redundancy, makes neurons learn robust representation
« Effectively training an ensemble of networks (with shared weights)

Note: when you use Dropout layers, you may notice that the validation/test loss seems better than the
training loss! Why?

14



Example: Deep Neural Nets: 33 years ago and 33 years from now

In the Colab lesson, we will reproduce a 1989 paper about a neural network for handwritten digit classi-

Get more data

Data augmentation
Use related data (transfer learning)
Use unlabeled data (self-supervised, semi-supervised)

Activation functions
Weight initialization
Convolutional units

Architecture/setup

Recurrent units

Input standardization

Normalization —
Batch normalization

Adaptive learning rates
Gradient clipping

Gradient descent

L2 or L1 regularization
Regularization Early stopping
Dropout

Figure 22: Techniques we will apply in this example.

fication, that was used in the late 90s to process 10-20% of all checks in the US.

+ The original paper had 5% error

What does it mean that we can do this without changing the basic network? It means the network always

Our realization has about 414%
With a bunch of these changes (but keeping the basic network the same) we get to 2.09%
The original model without any changes, but with more training data, gets to 3.05%

With our changes + more data, we get to 1.31%

had the capacity to do this well, but wasn't learning the best weights.
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